Chapter - 16
File Input/ Output

Copyright 2003 O'Reilly and Associates

/O Packages

There are 3 different I/O packages available to the C++ programmer:

e The C++ streams package. This package is used for most 1/0.

e The unbuffered I/O package. Used primarily for large file I/O and other
special operations.

e The C st di 0 package. Many older, C-- programs use this package. (A
C-- program is a C program that has been updated to compile with a C++
compiler, but uses none of the new features of the new language.)

This package 1s useful for some special operations.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 2

C++ provides four standard class variables for standard 1/O.

Variable
std::cin
std: :cout

std: :cerr

std::clog

C++1/0

Use
Console in (standard input)
Console output (standard output)

Console error (standard error)
Console log

Normally st d: : ci n reads from the keyboard, and st d: : cout, cerr,
and cl 0g go to the screen.

Most operating systems allow I/O redirection

ny _prog <file.in
my _prog >file. out

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Page 3

Filel/O

File I/O is accomplished using the <f st r eam h> package.
Input is done with the i f st r eamclass and output with the of st r eamclass.

Example:

| fstreamdata fil e; /Il File for reading the data from
data file.open("nunbers.dat");
for (1 =0; i < 100; ++i)
data file >> data array[i];
data file.close();

Open can be consolidated with the constructor.
| fstreamdata file("nunbers.dat");

The close will automatically be done by the destructor.

To check for open errors:

I f (data.file.bad()) {
cerr << "Unable to open nunbers.dat\n";
exit (8);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 4

S e et T e 2 —aive——eease bPese e & 4L 0 -

Reading Number

/**

**/

int main () {

}
Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 5

get | 1 ne member function

| stream &getline(char *buffer, int len, char delim= "\n")
Parameters:
buffer A buffer to store the data that has been read.
len Length of the buffer in bytes. The function reads up to len-1 bytes of data into the
buffer. (One byte is reserved for the terminating null character: \O) This parameter is
usually sizeof (buffer).

delim The character used to signal end of line.

The si zeof operator returns the size (in bytes) of a variable or type.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 6

Output files

Example:
of streamout file("out.dat");

Full constructor:
of stream : of strean(const char *nane, int nopde=io0s:: out,
int prot = fil ebuf::openprot);

Parameters:

name The name of the file.

mode A set of flags or’ed together that determine the open mode. The flag
ios: :out is required for output files.

prot File protection. This is an operating system dependent value that

determines the protection mode for the file. On UNIX the protection defaults to 0644 (read/
write owner, group read, others read). For MS-DOS/Windows this defaults to O (Normal file).

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 7

Flag
std::io0s::app
std::1o0s::ate
std::ios::1n
std::1io0s::0ut
std::io0s::binary
std::ios::trunc
std::10s::nocreate
std::ios::noreplace
Example:

Open Flag

M eaning

Append data to the end of the output file.

Goto the end of file when opened.

Open for input (must be supplied to opens for ifstream variables)

Open file for output (must be supplied to ofstream opens).

Binary file (if not present, the file is opened as an ASCI|I file).

Discard contents of existing file when opening for write.

Fail if the file does not exist (output files only. Input files alwaysfail if thereisno file.)
Do not overwrite existing file. If afile exists, cause the open to fail.

of steam out fil e("data.new',
| 0S::out|ios::binary|ios::nocreate|ios::app);

Practical C++ Programming

Copyright 2003 O'Reilly and Associates Page 8

Conversion Routines

To print a number such as 567 you must turn it into three characters “5, “6”
and “7”.

The << operator converts numbers to characters and writes them.
Conversion is controlled by a number of flags set by the set f and unset f
member function calls.

file var.setf(fl ags); /] Set flags
file var.unsetf(flags); // Clear flags

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 9

Flag

std::i
std::i
std::i
std::i

std::i
std::i
std::i
std::i

std::i
std::i
std::i
std::i
std::i
std::i
std::i

os:
os:
0sS.
0sS.

0S:. .
0S:. :
0Ss. :
os:

os:
os::
os:
(O
os:
0S:. :
0S.

Conversion Flags

: ski pws
cleft
right

i nternal

dec
oct
hex

: showbase

: showpoi nt

upper case

: showpos
scientific
:fi xed

uni t buf

cstdio

Practical C++ Programming

Meaning

Skip leading whitespace characters on input.
Output is left justified

Output is right justified

Numeric output is padded by inserting a fill character between the sign or base
character and the number itself.

Output numbers in base 10, decimal format
Output number in base 8, octal format.
Output numbers in base 16, hexadecimal format.

Print out a base indicator at the beginning of each number. For example:
hexadecimal numbers are proceeded with a “0x”.

Show a decimal point for all floating point numbers whether or not it’s needed
When converting hexadecimal numbers show the digits A-F as upper case.
Put a plus sign before all positive numbers.

Convert all floating point numbers to scientific notation on output.

Convert all floating point numbers to fixed point on output.

Buffer output. (More on this later)

Flush stream after each output.

Copyright 2003 O'Reilly and Associates Page 10

Example

nunber = Ox3FF;

std::cout << "Dec: " << nunber << '\n';
std::cout.setf(ios::hex);

std::cout << "Hex " << nunber << '\n';
std::cout.setf(ios::dec);

Output:

Dex 1023
Hex 3ff

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 11

Other Conversion Control Functions

Controlling the width of the output:
Iint file var.wdth(int size);

Controlling the precision of floating point (number of digits after the point).
Int file var.precision(int digits);

Setting the fill character:
char file var.fill (char pad);

I/0O Manipulators
#i ncl ude <i ostreanp
#i ncl ude <i omani p. h>

nunber = Ox3FF;
std::cout << "Nunber Is " << hex <<
nunber << dec << '\n':

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 12

/O Manipulators

Manipulator
std::setiosflags(long flags)
std::resetiosflags(long flags)
std::dec

std: : hex

std::oct

std: :setbase(int base)
std::setw(int wdth)

std: :setprecision(int precision)
std::setfill (char ch)

std::ws

std:: endl

std::ends

std::flush

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Description

Set selected conversion flags

Reset selected flags.

Output numbers in decimal format.
Output numbers in hexadecimal format.
Output numbers in octal format.

Set conversion base to 8, 10, or 16. Sort of a generalized
dec,hex,oct.

Set the width of the output.

Set the precision of floating point output
Set the fill character

Skip whitespace on input

Output end of line (‘\n’)

Output end of string (‘\0")

Force any buffered output out.

Page 13

A A A A A

/O Example

int main ()

{

Output:

123456789012345678901234567890
12<—
12<—-
***12<_
_|_12**<_
12.34<~-
12.3<-
le+01<-

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 14

Binary and ASCI| files

ASCII Files
e Contain characters you can read

e Can be printed directly on the printer
e Take up lots of space
e Portable

Binary files
e Contain the “raw” data

* You can’t read them, they print garbage on the screen if you try to type
them.

e Can not be printed directly on a printer.
e Relatively compact.
e Mostly machine dependent.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 15

Binary vs. Character

In C++ we use the notation: ‘1’ to represent the character one. We represent
the number as: 1.

The character ‘1’ has the numeric value 49.

To turn characters into numbers, we need to subtract 48 or the value of the

I nt integer;
char ch;
ch ="'5";

I nteger = ch - 48;
std::cout << "Integer " << integer << '\n';

"0’ 1s 48, you can just subtract ’0’.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 16

End of Line Puzzle

In the dark ages, BC (Before Computers) teletypes used <carriage return>

When computers came into existence storage cost $$$ so some people
decided to cut the end of line to one character.

UNIX Uses <line feed> only for end of line
Apple Uses <carriage return> only for end of line
MS/DOS Uses <carriage return><line feed> for end of line.

When reading ASCII files, the end-of-line must be translated into a new line
character ‘\n‘. Binary files do not need this translation. Translation of binary
files causes problems.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 17

Binary vs. ASCI| opens

/1 open ASCI| file for reading

ascii _file.open("nane", i0s::in);

/] open binary file for reading

binary file.open("nane", ios::in|ios::binary);
Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 18

Wewrite 128 bytes. DOS gets 129. Why?

int main ()

{

}
Hint: Here is a hex dump of the MS-DOS/Windows file:

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 19

Dump of MS-DOS output

080:7f%

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 20

Binary I nput

in _file.read(data _ptr size);

data_ptr Pointer to a place to put the data.
size Number of bytes to be read.
Example:

if (in_file.bad()) {

}

if (in_file.gcount () != sizeof (rectangle)) {
cerr << "Error: Unable to read full rectangle\n";
cerr << "I/O error of EOF encounterd\n ";

}

Binary Output is similar:

out_file.write(data _ptr size);

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 21

Buffering Problems

When will the output be printed?

std::cout << "Starting";
do_step_1();

do_step_2 () ;

do_step_3();

Print it now:

std::cout << "Starting" << std::flush;
do_step_1();

do_step_2 () ;

do_step_3();

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 22

Unbuffered |1/0

How to pick up a bunch of paper clips. (Buffered input)

1. Pick up a paper clip in your left hand.

2. Put in your right hand.

3. Repeat the last two steps until the right hand (buffer) 1s full.

4. Dump the handful in the box.

How to pick up cannon balls (unbuffered 1/O)

1. Pick up cannon ball using both hands.

2. Dump it in the box. Be careful to avoid dropping it on your feet.

Buffered I/0O 1s useful for small things. Unbuffered works for larger reads
and writes.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 23

Unbuffered | /O routines

name flags
name flags mode
file_descriptor
An integer that is used to identify the file for the read, write and close calls. If file
descriptor is less than O an error occurred.
name Name of the file.
flags Defined in the f cnt | . h header file.

mode Protection mode for the file. Normally this is 0666 for most files.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 24

-Open Flags

O _RDONLY Open for reading only.

O VWRONL Y Open for writing only.

O_RDWR Open for reading and writing.

O _APPEND Append new data at the end of thefile.

O_CREAT Create file (mode file required when this flag present).

O TRUNC If the file exists, truncate it to O length.

O _EXCL Fail if fileexigts.

O_BI NARY Openin binary mode (Older UNIX systems may not have this flag).

Open examples:
data fd = open("data.txt", O RDONLY);
out fd open("out put.dat"”, O CREAT| O WRONLY, 0666);

Pre-opened files:

File Number Description

0 Standard in
1 Standard out
2 Standard error

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 25

Read function

read size = read(file _descriptor, buffer, size);

read_size The actual number of bytes read. A 0 indicates end of file and a
negative number indicates an error.

file_descriptor
File descriptor of an open file.
buffer Pointer to the place to read the data.

size Size of the data to be read. This 1s the size of the request. The actual
number of bytes read may be less that this. (For example, we may run out of
data.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 26

Write and close functions

wite size = wite(file descriptor, buffer,
si ze);

write_size

Actual number of bytes written. A negative number
indicates an error.

file_descriptor
File descriptor of an open file.

buffer Pointer to the data to be written.

flag = close(file _descriptor)
flag 0 for success, negative for error.
file_descriptor

file_descriptor of an open file.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 27

Copy program

/**

**/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 28

- ——— el A N Ym0

exit (8);
}
exit (8);
}
exit (8);
}
exit (8);
}
}

close(in_file);
close (out_file);

}

Practical C++ Programming

e

-

-

Copy Program

Copyright 2003 O'Reilly and Associates Page 29

Designing file formats

We need a configuration file for a graph program.
One layout:

height (in inches)

width (in inches)

x lower limit

X upper limit

y lower limit

y upper limit

x scale

y scale

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 30

Samplefile:

10. 0
7.0

100
30

300
0.5
2.0

Copyright 2003 O'Reilly and Associates

C Style /O Routines

File variables:
The declaration for a file variable is:

#i ncl ude <stdi o. h>

FI LE *file-vari abl e; /* coment */
Open function:

file variable = fopen(nane, node);
file-variable

A file variable.

name Actual name of the file (data.txt, temp.dat, etc.).

mode Indicates if the file is to be read or written. Mode is “w’” for writing
and “r” for reading.

Close function:
status = f cl ose(file-variable)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 32

C'sstandard files

A
Sgn %d%rpl(q&famig EydetioCGH3d:

dat &&mbm(qﬂfavmrg FEndetioGHs3d
ddar W(@fawﬂrg FEyndattoGHss t o
TeasuCilemnetioGHssd . d ay

Copyright 2003 O'Reilly and Associates

Counting Characters

int main ()

{

exit (8);

break;
++count;

fclose(in_file);
}
Note: The function f get c gets a single character or returns the integer EOF if there are none left.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 34

Other functions

Writing a character:
fputc(character, file);

Getting a string:
string_ptr = fgets(string, size, file);

string_ptr Equal to st r i ng if the read was successful, or NULL
if EOF or an error 1s detected.

string A character array where the function places the string.

size The size of the character array. Fgets reads until it gets a

S| ze- 1 characters. It then ends
the string with a null (’\O) .

Writing a string;:
string_ptr = fputs(string, file);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 35

C Conversion Routines

Printing
printf(format, paraneter-1, paraneter-2, ...);

Example:
printf("Hello Wrld\n");

prints:

Hell o Worl d

Example:
printf(“The answer is %\ n”, answer);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 36

Conversion Characters

Conversion Variable Type

%d
% d
%d
%
0 f
%l
% u
%l
Vs
%
%0
X
%e

Practical C++ Programming

| Nt

| ong | nt
short 1 nt
fl oat
doubl e

unsi gned 1 nt
unsi gned | ong i nt
unsi gned short int

char * (string)

char

| nt (prints octal)

| nt (printsin hexadecimal)

f1 oat (intheform d.dddE+dd)

Copyright 2003 O'Reilly and Associates

Page 37

e x5 ¥ ¥ © r

Why does 2+2=59867

int main () {

}
Why does 21/7 = 0

int main () {

J

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 38

Printingtoafile

fprintf(file, format, paraneter-1,
parameter-2, ...);

“Printing” to a string:
sprintf(string, format, paraneter-1,
paraneter-2, ...);

Example:
char string[40]; /[* the file nane */

[* current file nunber for this segnent */
int file _nunber = O;

sprintf(string, "file. %", file_nunber);
++f i | e_nunber;
out file = fopen(string, "w');

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 39

Reading data

nunber = fscanf(file, format, ¶neter-1, . . .);
number Number of parameters successfully converted.
file A file opened for reading.
format Describes the data to be read.
parameter-1

First parameter to be read.

WARNING:

If you forget to put & in front of each variable for scanf , the result can be a
“Segmentation violation core dumped” or “Illegal memory access” error. In some
cases a random variable or instruction will be modified. This 1s not common on
UNIX machines, but MS-DOS/Windows, with its lack of memory protection, cannot

easily detect this problem. On MS-DOS/Windows, omitting & can cause a system
crash.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 40

Don't usef scanf

The end of line handling in f scanf is so weird that it’s almost impossible
to get the end of line right. To avoid the problems with f scanf , don’t use
it.

Instead use f get s /sscanf .
char |ine[100]; /'l Line for data

/| Read nunbers

fgets(line, sizeof(line), stdin);
sscanf(line, "% %", &nunberl, &nunber?2);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 41

I B A A A L L . ooy 5y AR — Sy T p—

C StyleBinary I/0

read _size = fread(data ptr, 1, size, file);

read_size Size of the data that was read. If this is less than size, then an end of file
or error occurred.
data_ptr Pointer to the data to be read.
size Number of bytes to be read.
file Input file.
}
Writing:

wite size = fwite(data ptr, 1, size, file);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 42

