
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page1

Chapter - 29
Programming

Adages

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

General
● Comment, comment, comment. Put a lot of comments in your

program. They tell other programmers what you did. They
also tell you what you did.

● Use the “ KISS” principle. (Keep it Simple, Stupid.) Clear
and simple is better than complex and wonderful.

● Avoid side effects. Use ++ and -- on lines by themselves.
● Never put an assignment inside a conditional. Never put an

assignment inside any other statement.
● Know the difference between = and = =. Using = for = = is a

very common mistake and is difficult to find.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

General
●Never do “ nothing” silently.

// Don't program like this for (index = 0; data[index] < key; ++index); // Did you see the semicolon at the end of // the last line? Always put in a comment. for (index = 0; data[index] < key; ++index) /* do nothing */;

●Practice coding. People involved in almost every other profession that
requires some significant level of skill and creativity practice (e.g. artists,
athletes). Helping others learn to program, makes good practice for you by
going over what you already know, or think you know.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Design
●If you come to a choice between a relatively “ quick hack”
or a somewhat more involved but more flexible solution,
always go for the more flexible solution. You’r e more
likely to reuse it or learn from it. You’r e also more likely to
be thankful later on when requirements shift a little and
your code is ready for it.
●Never trust any user input to be what you expect. What
would your program do at any given point if a cat walked
across the keyboard, several times?
●Watch out for signed-unsigned conversions and over/under
flow conditions.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Declarations
●Put variable declarations one per line and comment
them.
●Make variable names long enough to be easily
understood, but not so long that they are difficult to
type in. (Two or three words is usually enough.)
●Never use default return declarations. If a function
returns an integer, declare it as type int.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Switch Statement
●Always put a default case in a switch statement.
Even if it does nothing, put it in.

switch (expression) {

default:

 /* do nothing */;

break;
}
●Every case in a switch should end with a break or

/* fall through */

statement.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Pre-processor
●Always put parentheses () around each constant expression defined
by a pre-processor #define directive.

#define BOX_SIZE (3*10) /* size of the box in pixels */

●Put () around each argument of a parameterized macro.

#define SQUARE(x) ((x) * (x))

●Surround macros that contain complete statements with curly braces.

// A fatal error has occurred. Tell user and abort #define DIE(msg) {(void)printf(msg);exit(8);}

●When using the #ifdef/#endif construct for conditional compilation,
put the #define and #undef statements near the top of the program
and comment them.
●Whenever possible use const instead of #define.
●The use of inline functions is preferred over the use of parameterized
macros.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

Style
●A single block of code enclosed in {} should not span more than a
couple of pages. Split up anything much bigger than that up into
several smaller, simpler procedures.
●When your code starts to run into the right margin, it’ s about time to
split the procedure into several smaller simpler procedures.

●Always define a constructor, destructor and copy constructor for a
class. If using the C++ defaults, “ define” these routines with a
comment such as:

class example {

public:

// example -- default constructor

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Compiling
●Always create a Makefile so others will know how
to compile your program.
●When compiling, turn on all the warning flags. You
never know what the compiler might find.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page10

The Ten Commandments for
C++ Programmers

By Phin Straite
1. Thou shalt not rely on the compiler default methods for
construction, destruction, copy construction, or assignment
for any but the simplest of classes. Thou shalt forge these
“ big four” methods for any non-trivial class.
2. Thou shalt declare and define thy destructor as virtual
such that others may become heir to the fruits of your
labors.
3. Thou shalt not violate the “ is-a” rule by abusing the
inheritance mechanism for thine own twisted perversions.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page11

The Ten Commandments for
C++ Programmers

4. Thou shalt not rely on any implementation-dependent behavior of
a compiler, operating system, nor hardware environment, lest your
code be forever caged within that dungeon.
5. Thou shalt not augment the interface of a class at the lowest level
without most prudent deliberation. Such ill-begotten practices
imprison thy clients unjustly into your classes, and foment unrest
when code maintenance and extension are required.
6. Thou shalt restrict thy friendship to truly worthy contemporaries.
Beware, for thou art exposing thyself rudely as from a trench coat.
7. Thou shalt not abuse your implementation data by making it
public or static except in the rarest of circumstances. Thy data are
thine own; share it not with others.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page12

The Ten Commandments for
C++ Programmers

8. Thou shalt not suffer dangling pointers or references to be
harbored within your objects. These are nefarious and precarious
agents of random and wanton destruction.

9. Thou shalt make use of available class libraries as conscientiously
as possible. Code reuse, not just thine own but that of your clients as
well, is the holy grail of OO.

 10.Thou shalt forever forswear the use of the vile printf/scanf,
rather favoring the flowing streams. Cast off thy vile C cloak and
partake of the wondrous fruit of flexible and extensible I/O.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page13

Final Note
Just when you think you’ ve discovered all the things that C++ can do
to you — think again. There are still more surprises in store for you.

Question: Why does the following program think everything is two?
(This inspired the last adage.)

#include <iostream>

int main() {

 int number; std::cout << "Enter a number: "; std::cin >> number; if (number =! 2) std::cout << "Number is not two\n";

else

 std::cout << "Number is two\n"; return (0);

}

