Chapter - 10
The C++
Pre-processor



The Pre-processor

The C++ Pre-processor is nothing more than a
glorified text editor.

It has its own syntax and knows nothing about C++
syntax.
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Hdefine statement

#define SIZE 20
Tells the C++ pre-processor “global change word ‘SIZE’ to 20”.
Note: The #define statement was widely used in the old C language (which

didn't have a const declaration).

In C++ most #define statements can and should be replaced by const
declarations.

General form of the #define statement:
#defi ne Nane Substitute-Text
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Hdefine misuse

Anything can be used as the substitute text. For example:
#define FOR ALL for(i = 0; 1 < ARRAY_SIZE;, ++i)

Sample use:
/*
* Clear the array
*/
FOR ALL {
data[i] = O;
}

This changes the syntax of C++ and will confuse any programmer who
doesn't know what FOR_ALL is. (And programmers hate to have to look up
such things.)
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#aefine super misuse

BEGIN

END
This isn’t C++. It’s PASCAL (sort of).
Excerpt from an early version of a program called the Bourne Shell (a UNIX utility).

start () ;

backspace () ;
OTHERWISE:
error () ;

FI
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Pre-processor surprises

Syntax error on line 11.

Note: That’s no where near the line that caused the error.
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Question:

The following program generates the answer 47 instead of the expected answer
144. Why? (Hint below.)

To see the output of the Pre-processor on UNIX execute the command:
CC -E prog.cpp

On MS-DOS/Windows, use:

Cpp prog.cpp
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Question:

This program generates a warning that counter is used before it is set. This is a
surprise to us because the for loop should set it. We also get a very strange warning,
null effect”, for line 11.

1 // warning, spacing is VERY inportant
2

3 #include <iostreanr

4

5 #defi ne MAX=10

6

7 mai n()

8 {

9 I nt counter;

10

11 for (counter =MAX; counter > O;
12 --counter)

13 std::cout << "H there\n";
14

15 return (0);

16 }
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Question:

The following program is supposed to print the message “Fatal Error:
Abort” and exit when it receives bad data. But when it gets good data, it exits.
Why?
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Hdefinevs. const

Const
Relatively new (before const, #define was the only way to go)
Part of the C++ syntax
* Follows C++ scoperules
Compiler detects errors where they occur

#define
* Used mostly by older programs
* Can be used to define almost anything (including statements)
* Pre-processor style syntax
* Errors may be detected far from where they occur

Y ou should use const whenever possible instead of #define.
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Conditional Compilation

Example:

std: :cout <<

The code is turned on by putting:
#def 1 ne DEBUG

IN your program or by putting:
- DDEBUG
In as part of the compilation line.
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Conditional
Compilation Style

Put any statements that control conditional compilation at the top of your
code where they're easy to find.

If you use:

#def i ne DEBUG [* Turn debuggi ng on */
to turn on debugging, then use

#undef DEBUG [* Turn debugging off */

to turn it off. (Strictly speaking the #undef is not needed, however it does
serve to notify someone that changing it to a#define will do something.)
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Hiftndef and #else

#ifndef compiles the code if the symbol is not defined.
#el se reverses the sense of the conditional.

#i f def DEBUG

std::cout << "Test version. Debugging is on\n";
#el se [ * DEBUG */

std::cout <<"Production version\n";
#endi f /* DEBUG */
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Commenting out code

A programmer wanted to get rid of some code temporarily so he commented it out:

section_report () ;

dump_table () ;

This generates a syntax error for the fifth line. (Why?)
A better method is to use the #ifdef construct to remove the code.

section_report ();

dump_table () ;

Note: Any programmer defining the symbol UNDEF will be shot.
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| nclude Files

The directive:
#1 ncl ude <iI ostreanp

tells the pre-processor: "go to the directory containing the
standard include files and copy the file iostream in here."

The directive:
#1 ncl ude "defs. h"

tells the pre-processor: "Copy the file in from my local directory."

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 15



Protection against
doubleincludes

#1 f ndef CONST H | NCLUDED
[* defl ne constants */

#define CONST H | NCLUDED
#endif /* CONST H | NCLUDED */
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Parameterized M acr os

Example:
#define SQR(x) ((x) * (x)) [* Square a nunber */
SQR(5) expandsto ((5) * (5))

fExample of how not to use:

main ()
{

}
}
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Why ++ and -- should always
be on their own line:

int main ()

{
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Question

The following program tells us that we have an undefined variable nunber , but
our only variable nameiscount er . Why?

int main ()

{

}
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The# operator

The # operator turns a parameter into a string. For

example:
#def | ne STR(data) #data
STR( hel | 0)

generates

"hel | 0"
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Parameterized macr os
vS. Inline functions

Parameterized Macros

Are part of the older C style pre-processor syntax

Can easily get you into trouble with hidden side effects
The SQR macro we defined works on both float and int.

inline functions

Are part of the C++ syntax

Much better error detection

e Do not do mere text replacement. We could not define a SQR inline function
that would work on both float and int.

inline functions are must less risky than parameterized macros and should be used

whenever possible.
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Rulefor pre-processor use

1. In particular you should enclose #define constants and macro parameters.
#define area (20*10) // Correct
#defi ne size 10+22 /1 Wong
#define DOUBLE(x) (x * 2) // Wong
#define DOUBLE(x) ((x) * 2) // R ght

2. When defining a macro with more than one statement, enclose the code in {}.

3. The pre-processor is not C++. Don’t use = or ;.

#define X =5 // |11 egal
#define X 5; [/ |11l egal
#define X = 5;// Very Il1legal
#define X5 // Correct
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