Chapter - 10
The C++
Pre-processor

The Pre-processor

The C++ Pre-processor is nothing more than a
glorified text editor.

It has its own syntax and knows nothing about C++
syntax.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 2

Hdefine statement

#define SIZE 20
Tells the C++ pre-processor “global change word ‘SIZE’ to 20”.
Note: The #define statement was widely used in the old C language (which

didn't have a const declaration).

In C++ most #define statements can and should be replaced by const
declarations.

General form of the #define statement:
#defi ne Nane Substitute-Text

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 3

Hdefine misuse

Anything can be used as the substitute text. For example:
#define FOR ALL for(i = 0; 1 < ARRAY_SIZE;, ++i)

Sample use:
/*
* Clear the array
*/
FOR ALL {
data[i] = O;
}

This changes the syntax of C++ and will confuse any programmer who
doesn't know what FOR_ALL is. (And programmers hate to have to look up
such things.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 4

R I

#aefine super misuse

BEGIN

END
This isn’t C++. It’s PASCAL (sort of).
Excerpt from an early version of a program called the Bourne Shell (a UNIX utility).

start () ;

backspace () ;
OTHERWISE:
error () ;

FI

Practi calxﬂ-%éa!amming Copyright 2003 O'Reilly and Associates Page 5

Pre-processor surprises

Syntax error on line 11.

Note: That’s no where near the line that caused the error.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 6

ez

Question:

The following program generates the answer 47 instead of the expected answer
144. Why? (Hint below.)

To see the output of the Pre-processor on UNIX execute the command:
CC -E prog.cpp

On MS-DOS/Windows, use:

Cpp prog.cpp

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 7

Question:

This program generates a warning that counter is used before it is set. This is a
surprise to us because the for loop should set it. We also get a very strange warning,
null effect”, for line 11.

1 // warning, spacing is VERY inportant
2

3 #include <iostreanr

4

5 #defi ne MAX=10

6

7 mai n()

8 {

9 I nt counter;

10

11 for (counter =MAX; counter > O;
12 --counter)

13 std::cout << "H there\n";
14

15 return (0);

16 }

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 8

Question:

The following program is supposed to print the message “Fatal Error:
Abort” and exit when it receives bad data. But when it gets good data, it exits.
Why?

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 9

Hdefinevs. const

Const
Relatively new (before const, #define was the only way to go)
Part of the C++ syntax
* Follows C++ scoperules
Compiler detects errors where they occur

#define
* Used mostly by older programs
* Can be used to define almost anything (including statements)
* Pre-processor style syntax
* Errors may be detected far from where they occur

Y ou should use const whenever possible instead of #define.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 10

Conditional Compilation

Example:

std: :cout <<

The code is turned on by putting:
#def 1 ne DEBUG

IN your program or by putting:
- DDEBUG
In as part of the compilation line.

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 11

Conditional
Compilation Style

Put any statements that control conditional compilation at the top of your
code where they're easy to find.

If you use:

#def i ne DEBUG [* Turn debuggi ng on */
to turn on debugging, then use

#undef DEBUG [* Turn debugging off */

to turn it off. (Strictly speaking the #undef is not needed, however it does
serve to notify someone that changing it to a#define will do something.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 12

Hiftndef and #else

#ifndef compiles the code if the symbol is not defined.
#el se reverses the sense of the conditional.

#i f def DEBUG

std::cout << "Test version. Debugging is on\n";
#el se [* DEBUG */

std::cout <<"Production version\n";
#endi f /* DEBUG */

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 13

T

Commenting out code

A programmer wanted to get rid of some code temporarily so he commented it out:

section_report () ;

dump_table () ;

This generates a syntax error for the fifth line. (Why?)
A better method is to use the #ifdef construct to remove the code.

section_report ();

dump_table () ;

Note: Any programmer defining the symbol UNDEF will be shot.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 14

| nclude Files

The directive:
#1 ncl ude <iI ostreanp

tells the pre-processor: "go to the directory containing the
standard include files and copy the file iostream in here."

The directive:
#1 ncl ude "defs. h"

tells the pre-processor: "Copy the file in from my local directory."

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 15

Protection against
doubleincludes

#1 f ndef CONST H | NCLUDED
[* defl ne constants */

#define CONST H | NCLUDED
#endif /* CONST H | NCLUDED */

Practical C++ Programming Copyright 2003 O'Reilly and Associates

D I A A I A Y &S NN - r 7 D S

Parameterized M acr os

Example:
#define SQR(x) ((x) * (x)) [* Square a nunber */
SQR(5) expandsto ((5) * (5))

fExample of how not to use:

main ()
{

}
}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 17

o

Why ++ and -- should always
be on their own line:

int main ()

{

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 18

R e A A A A A |

Question

The following program tells us that we have an undefined variable nunber , but
our only variable nameiscount er . Why?

int main ()

{

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 19

The# operator

The # operator turns a parameter into a string. For

example:
#def | ne STR(data) #data
STR(hel | 0)

generates

"hel | 0"

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 20

Parameterized macr os
vS. Inline functions

Parameterized Macros

Are part of the older C style pre-processor syntax

Can easily get you into trouble with hidden side effects
The SQR macro we defined works on both float and int.

inline functions

Are part of the C++ syntax

Much better error detection

e Do not do mere text replacement. We could not define a SQR inline function
that would work on both float and int.

inline functions are must less risky than parameterized macros and should be used

whenever possible.
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 21

Rulefor pre-processor use

1. In particular you should enclose #define constants and macro parameters.
#define area (20*10) // Correct
#defi ne size 10+22 /1 Wong
#define DOUBLE(x) (x * 2) // Wong
#define DOUBLE(x) ((x) * 2) // R ght

2. When defining a macro with more than one statement, enclose the code in {}.

3. The pre-processor is not C++. Don’t use = or ;.

#define X =5 // |11 egal
#define X 5; [/ |11l egal
#define X = 5;// Very Il1legal
#define X5 // Correct

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 22

