
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page1

Chapter - 2
The Basics of 
Programming



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

What is a program?
A program is a set of instructions that a computer or someone else 
follows. 

We have programs in English. But English is a lousy language when 
it comes to writing exact instructions. The language is full of 
ambiguity and imprecision. Grace Hopper, the grand old lady of 
computing, once commented on the instructions she found on a bottle 
of shampoo:

Wash, Rinse, Repeat

She tried to follow the directions, but she ran out of shampoo. (Wash-
Rinse-Repeat. Wash-Rinse-Repeat. Wash-Rinse-Repeat...)



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

Machine and Assembly 
Language

When computers cost millions and programmers cost $15,000 a year, 
people programed in machine language:

1010 1111
0011 0111
0111 0110
.. and so for several hundred instructions

Later they devised a translator called an assembler so they could program in 
assembly language.

Program Translation
MOV A,47 1010 1111
ADD A,B 0011 0111
HALT 0111 0110
.. and so for several hundred instructions



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

What an assembler does

Note: The first programmer who wrote a program to 
assemble code was chewed out because, "How dare 
you even think of using such an expensive machine 
for a mere 'clerical' task."



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

High Level Language
High level languages were developed to:

● Make programming easier. A single high level language could 
generate many assembly instructions.

For example: 

area = width * height   

generates:

MOVE D0, HEIGHT
MOVE D1, WIDTH
MUL D0,D1
MOVE AREA,D0

● Make programming machine independent. The idea was to hide the 
details of the machine from the programmer.

● Allow the programmer to program in a language that was more 
natural to him.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

High Level Languages
Some of the high level languages developed are:

FORTRAN
(FORmula TRANslator) designed to perform 
scientific calculations.

COBOL Useful for writing business reports.

PASCAL A language for teaching students.

C Designed by hackers for hackers to hack 
with (to write operating systems)



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Development of C++
In 1980 Bjarne Stroustrup started working on a new language, 
called “ C with Classes.”  This language improved on C by adding 
a number of new features, the most important of which was 
classes. This language was improved, augmented, and finally 
became C++.

C++ owes it success to the fact that it allows the programmer to 
organize and process information more effectively than most 
other languages. Also, it builds on the work already done with 
the C language. In fact, most C programs can be transformed 
into C++ programs with little trouble. True they don’ t use all the 
new features of C++, but they do work. So C++ allows people to 
build on a existing base of C code.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

Construction of a Program



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Construction Tools
● Text Editor

This is used to create the program in C++ form. Since this is the start or 
source of the other forms this is called a source file. (Source files end with 
.cpp. -- also used C and .cc.)

#include <iostream> int main() 

{

    std::cout << "Hello World\n";         return (0); 

}
● Compiler

This translates the source file  into a machine dependent file called an 
object file. The object file contains the instructions in a way that the 
machine can understand.
The source file is in the C++ language (high level code) while the object 
file is in machine language (low level code.)



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page10

More Construction Tools

● Library

One of the goals of a high level language is to create resusable code 
modules. The most useful of these have been put in a standard library for 
your use.

●  Linker

The linker takes the object file produced by the compiler, combines it with 
entries from the library (linking) and produces a executable program.
On MS-DOS/Windows executable programs end with .EXE. On UNIX, 
they end with nothing.

●  Make utility

The make utility is designed to be the programmer's assistant. It helps him 
keep track of what compiler commands to use in the construction of a 
program.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page11

Debuggers
● Debugger

The debugger allows a programmer to examine his program while it 
is running. Some of the features of a debugger include:
● Breakpoints.   They allow the programmer to stop the 

program on any line. 
● Single step.   Executes the program one line at a time. 
● Display.   Allows the programmer to print the value of 

variables and expressions at any time. 

● Browser

Allows the programmer to display relevant portions of the source 
file. 



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page12

Wrappers

Wrappers or Integrated Development Environments try to combine all 
the utilities needed to create a program under one roof. 

For example, under UNIX the CC command is a wrapper that will call 
the compiler, linker and other programs automatically.

Under MS-DOS/Windows both Borland and Microsoft have 
integrated development environments that combine editor, compiler, 
linker, and debugger all under one GUI.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page13

Hello World

#include <iostream> int main() 

{

    std::cout << "Hello World\n";         return (0); 

}



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page14

Compiling the program using the 
UNIX CC compiler (GENERIC UNIX)

Use the command:

% CC -g -ohello hello.cpp     

 

Details
CC The compiler
-g Turns on debugging
-ohello Tells C++ that the name of the output (the 
program) is hello
hello.ccp
The source file to compile



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page15

Compiling the program using the Free 
Software Foundation's g++ compiler.

Use the command:
% g++ -g -Wall -ohello hello.cpp

Details
g++ The command to invoke the compiler
-g Turns on debugging
-Wall Turns on all warnings
-ohello Tell the compile that the name of the output file (the 
program) is hello.
hello.cpp

The source file containing the program.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page16

Compiling the program using Borland-C++ 
under Microsoft Windows

Use the following command to compile the program:
C:> 

bcc32  -v -N -w -tWC -ehello hello.cpp     

 

Details
bcc32 The name of the compiler
-v Turns on debugging
-N Turns on stack checking
-tWC Indicates that this program is a console application (runs 
in a command prompt window).
-ehello Tells the compiler that the program name (executable) 
is hello.
hello.cpp

The source file containing the program



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page17

Compiling the program using Microsoft 
Visual C++ .NET

C:> cl /FeHELLO /GZ /RTCsuc /Zi /Wall hello.cpp 

 

Details
cl The name of the compiler.
/FeHELLO The executable is named HELLO.EXE
/GZ /RTCsuc

Turn on runtime checking
/Zi Turns on debugging
/Wall Turns on all warnings
hello.cpp The name of the source file



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page18

Running the program
On UNIX:
 % hello
and the message

Hello World
appears.

On MS-DOS/Windows:
C:> hello

and the message
Hello World

appears.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page19

Getting Help

On UNIX
% man subject

and
% man -k keyword

On MS-DOS/Windows, use the Help menu item in 
the integrated development environment.



Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Programming Exercises

Exercise  2- 1: On your computer, type in the 
“ hello”  program and execute it. 

Exercise 2-2: Take several programming 
examples from any source, enter them into the 
computer and run them. 


