
Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page1

Supplement
From C to C++

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page2

History of C++

B.C. Early languages such as FORTRAN, COBOL, ALGOL, PL/I
and others.

1970 Brian Kernigham and Dennis Ritchie invent C. The language
they used for inspiration was called “ B”

1980 Bjarne Stroustrup creates “ C with Classes.”

1995 The ANSI Committee releases their draft of the C++ Standard.
1998 An official C++ standard is adopted.

(This is the day that C++ started to become obsolete.)

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page3

Quality

Quality is designed in, not tested in.

— Dave Packard

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Maintaining Maintenance
The average number of lines of code in a typical application has
skyrocketed from 23,000 in 1980 to 1.2 million in 1990, according to
a recent survey of managers attending the 1990 Annual Meeting and
Conference of the Software Maintenance Association. At the same
time, system age has risen from 4.75 to 9.40 years. Fortunately, the
number of people devoted to maintaining them has made a
comparable jump from 0.41 to 19.4.

What’ s worse, 74% of the managers surveyed at the 1990 Annual
Meeting and Conference of the Software Maintenance Association
reported that they “ have systems in their department that have to be
maintained by specific individuals because no one else understands
them.”

— Software Maintenance News, February 1991

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Comments
A program serves two masters.
• Code tells the computer what to do.
• Comments describe what the program does to the poor programmer who
has to maintain it.

There are two types of comments in C++.

// Comments that begin with double-slash

// and go to the end of line

/* Comments that start with slash/star */

/*and go to star/slash */

/*

* The second version can be used
 * for multi-line comments

*/

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Hello World

#include <iostream>
int main()
{

std::cout << "Hello World\n";

return (0);
}

What’ s missing from this program?

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Hello Again
/**

* hello -- program to print out "Hello World". * * Not an especially earth-shattering program. *

* *

* Author: Steve Oualline *

* *

* Purpose: Demonstration of a simple program *

* *

* Usage: *

* Run the program and the message appears *

 **/
#include <iostream>
int main(){

// Tell the world hello

std::cout << "Hello World\n";

return (0);
}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page8

Beginning Comments
● Heading
● Author
● Purpose
● Usage
● References
● File Formats
● Restrictions
● Revision History
● Error Handling
● Notes
● Anything else that’ s useful

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Oualline's Law Of Documentation

90% of the time the documentation is lost.

Out of the remaining 10%, 9% of the time the
revision of the documentation is different from the
revision of the program and therefore completely
useless.

The 1% of the time you actually have documentation
and the correct revision of the documentation, it will
be written in Japanese.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page10

Boxing with VI

Edit the file .exrc and add:

:abbr #b /**
:abbr #e **/

To create a top box, type
#b<return>

To create a box bottom
#e<return>

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page11

Text-Setting
/**
 **

******** WARNING: This is an example of a *******

******** warning message that grabs the *******

******** attention of the program. *******

 **
 **/

/*------------> Another, less important warning<--------*/

/*>>>>>>>>>>>> Major section header <<<<<<<<<<<<<<<< */

/**

* We use boxed comments in this book to denote the *

* beginning of a section or program *

 **/

/*--*\

* This is another way of drawing boxes *

--/

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page12

More Text Setting
/*
 * This is the beginning of a section
 * ^^^^ ^^ ^^^ ^^^^^^^^^ ^^ ^ ^^^^^^^
 *
 * In the paragraph that follows we explain what
 * the section does and how it works.
 */

/*
 * A medium level comment explaining the next
 * dozen or so lines of code. Even though we don’t ha ve
 * the bold typeface we can **emphasize** words.
 */

/* A simple comment explaining the next line */

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page13

Variables
Use long names (but not too long).

int p,q,s; // Wrong

int account

_number; // Right

Always comment your variable declarations

int name_count; // The number of

 // names in the list
Units are important.

int length; // Length of the widget

Is length, mm, cm, miles, light-years or microns? The answer’ s important.

The following comes from a real program written by Steve Oualline:
/**

* Note: I have no idea what the input units are, nor *

* do I have any idea what the output units are, *

* but I have discovered that if I divide by 3 *

* the plots look about the right size. *

 **/

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page14

KISS (Keep it Simple,
Stupid)

Which is more valuable?

1) A clear, well written, easy to read, but broken
program

2) A clever complex working program.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page15

Precedence Rules
ANSI Standard Rules

1. () [] -> . 2. ! ~ ++ -- (type) - (unary) * (dereference) & (address of) sizeof 3. * (multiply) / % 10. | 4. + - 11. && 5. << >> 12. || 6. < <= > >= 13. ?: 7. == != 14. = += -= etc. 8. & (bitwise and) 15. , 9. ^

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page16

Practical Precedence Rules

1. * (multiply) / % 2. + -

Put parentheses around everything else.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page17

Question: Which if does
the else belong to?

if (count < 10) // if #1
 if ((count % 4) == 2) // if #2
 std::cout << "Condition:White\n";
 else // (Indentation is wrong)
 std::cout << "Condition:Tan\n";

a. It belongs to if #1.
b. It belongs to if #2.
c. You don’ t have to worry about this situation if you never write code like
this.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page18

Side Effects
A single statement should perform a single function.

• Don’ t put assignment statements inside other statements

Don’ t use ++ or -- inside other statements

What does the following code fragment print?

i = 2;

j = square(++i);

std::cout << "i is " << i << '\n';

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page19

Answer
Answer

The answer depends on how square is defined.

int square(int arg)
{

return (arg * arg);
}

We get a 3.

#define square(x) ((x) * (x))

We get a 4 (and j contains the wrong answer).

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Switch Statements
● End every case with either “ break” or “ /* fall through */”
● Every switch needs a default, even if it is “ /* Do nothing */”

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page21

Switch Example
switch (command) {

 case 'r': // Reset command

do_reset();

// Fall Through

case 'x':

do_exit();

break;

default:

// Do Nothing

break;
}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page22

Rules of Thumb
● Functions should be about 2 or 3 pages long

About the time you start running into the right margin consider
breaking your function into several smaller, simpler functions.

C++ statements are like a sentence. They should be single subject
and not go on forever.

Most important
● Program in the clearest and simplest manner possible.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page23

Electronic Archeology
The art of going through someone else’ s code to discover amazing
things (like how and why the code works).

Contrary to popular belief, most C++ programs are not written by

dyslexic Hin dus using Zen programming techniques, and poorly

commented in Swahili. They just look that way.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page24

Ode to a maintenance
programmer
Once more I travel that lone dark road

into someone else’ s impossible code

Through “ if” and “ switch” and “ do” and “ while”

that twist and turn for mile and mile

Clever code full of traps and tricks

and you must discover how it ticks

And then I emerge to ask a new,

“ What the heck does this program do?”

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page25

Archeological Tools
● Editor (browser)
● Cross referencer
● grep

● indention tools
● pretty printers

● call graphs
● debuggers

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page26

Techniques
● Mark up the program (several colored pens are useful)

Go through and comment the code

Change the short variables to long ones

Add comments

int state; // Controls some sort of state

machine

int rmxy; // Something to do with color

correction?

int idn; // ???

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page27

What's New In C++
● New bool type
● A new string class
● New I/O System
● New variable types (const, reference, etc.)
● Overloaded procedures
● inline procedures
● Overloaded operators
● Classes
● Exceptions
● Templates

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page28

Boolean (bool) type
Boolean varaible can have one of two values:

true
false

Example:

bool flag;
flag = true;

Note: The bool type is relatively new to C++ and some legacy
macros exist to implement a bool type. These macros use BOOL or
Bool as a data type and TRUE and FALSE as the values. (These
legacy types should be avoided.)

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page29

C++ Strings
Bring in the string package using the statement:

#include <string>
Declaring a string

std::string my_name; // The name of the user
Assigning the string a value:

my_name = "Oualline";

Using the “ +” operator to concatenate strings:

first_name = "Steve"; last_name = "Oualline";
full_name = first_name + " " + last_name;

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page30

More on Strings
Extract a substring:

result = str.substr(first, last);
// 01234567890123
str = "This is a test";
sub = str.substr(5,6);

// sub == “12 3”

Finding the length of a string

string.length()

Wide strings contain wide characters. Example:

std::wstring funny_name;
// If you see nothing between the "" below then you
// don't have Chinese fonts installed

funny_name = L"

? ? ?

";

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page31

Accessing characters in a
string

You can treat strings like arrays, but this is not safe:
// Gets the sixth character
ch = str[5];
// Will not check to see if
// the string has 6 characters
Better (and much safer)
// Gets the sixth character
// Aborts program if
// there is no such character
ch = str.at(5);

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page32

Reading Data

The standard class std::cout is used with << for writing
data.
The standard class std::cin is used with >> for reading
data.
std::cin >> price >> number_on_hand;
Numbers are separated by whitespace (spaces, tabs, or
newlines).
For example, if our input is:
32 6
 Then price gets 32 and number_on_hand gets 6.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page33

Doubling a number
#include <iostream> int value; // a value to double

int main()
{

 std::cout << "Enter a value: "; std::cin >> value; std::cout << "Twice " << value <<

" is " << value * 2 << '\n'; return (0);

}

Sample run
Enter a value: 12
Twice 12 is 24

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page34

Question: Why is
width undefined?

#include <iostream> int height; /* the height of the triangle int width; /* the width of the triangle */ int area; /* area of the triangle (computed) */

main()
{

 std::cout << "Enter width height? "; std::cin >> width >> height; area = (width * height) / 2; std::cout << "The area is " << area << '\n'; return (0);

}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page35

Reading Strings

The combination of std::cin and >> works fine for integers, floating
point numbers and characters. It does not work well for strings.

To read a string use the getline function.
std::getline(std::cin, string);

For example:
std::string name; // The name of a person

std::getline(std::cin, name);

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page36

New I/O System
C++ uses a new I/O system called streamed based I/O. We’ ll study
the details of this I/O system later, but for now we’ ll learn the
basics.

 C++ uses std::cin, std::cout, and std::cerr for input,
output and error output. The operators << and >> are used for
input and output.

The stream std:clog is used for log information.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page37

Using std::cout
Simple output
std::cout << "This is a test\n";
Outputting Numbers
float f = 1.2;
int i = 34;
std::cout << "This is an integer " << i <<
 " and this is a float " << f << '\n';
 Notice that C++ automatically knows what variable types are being

used and formats the data accordingly. (Unlike the C printf
statement.)

(For example, what happens if we do the following in C:
printf("%d", 3.5);
)

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page38

Using std::cin
Examples:

int i;

float f;

char str[100];

std::cin >> i;

std::cin >> i >> f;

// Note: Space or newline ends the string

std::cin >> str;

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page39

New Variable Types
Constant declarations

const int MAX_USERS = 100; // Max users at one time

 Since MAX_USERS is a constant:

MAX_USERS = 101;

is illegal.

Constant declarations replace the old C style #define declarations.
The previous declaration could have been written in classic C as:

#define MAX_USERS 100

/* The most users at one time */

Constant declaration must be initialized.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page40

const Pointers

There are several flavors of constant pointers. It’ s important to know what the const apples to.
const char* first_ptr = "Forty-Two";
first_ptr = "Fifty six"; // Legal or Illegal
*first_ptr = 'X'; // Legal or Illegal

char* const second_ptr = "Forty-Two";
second_ptr = "Fifty six"; // Legal or Illegal
*second_ptr = 'X'; // Legal or Illegal

const char* const third_ptr = "Forty-Two";
third_ptr = "Fifty six"; // Legal or Illegal
*third_ptr = 'X'; // Legal or Illegal

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page41

Reference Parameters

Reference parameters allow the programmer to define a new name for
an existing variable. For example:
int an_integer; // A random integer
// A reference to an_integer
int &ref_integer = an_integer;
Any changes made to ref_integer will change an_integer. These two
variables are the same thing.
For example:
an_integer = 5; // Is the same as
ref_integer = 5;

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page42

References

Another reference example:
int total[100];
int &first_total = total[0];

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page43

Constants and
Functions

Constants can be used in declaring function
parameters:
int add_two(const int first,
 const int second) {
 return (first + second);
}
The value of these parameters can not be changed
inside this function.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page44

Reference Parameters

Reference may be used in parameter declarations
void inc_counter(int &counter){
 ++counter;
}
For example:
main()
{
 int a_count = 0; // Random counter
 inc_counter(a_count);
 std::cout << a_count << '\n';
 return (0);
}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page45

More Reference
Parameters

What s going on�

:

When C++ sees the statement:
 inc_counter(a_count);
internally it generates the code:
 int &counter = a_counter;
Now any changes made to counter result in changes to
a_counter. Since counter is a reference to
a_counter these variables are the same thing.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page46

Reference and Return
Values

Let’ s define a procedure to find the biggest element in an array:
int &biggest(int array[],
 const unsigned int array_size) {
 int big_index; // Index of the biggest element
 int index; // Index of the current element

 big_index = 0;
 for (index = 1; index < array_size; index++) {
 if (array[big_index] < array[index])
 big_index = index;
 }
 return (array[big_index]);
}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page47

Reference Returns (II)

The function biggest returns a reference to the biggest element of
an array. We can use this to print the biggest element of an array:
 int array[] = {1, 99, 2, 3};
 std::cout << "Biggest element is " <<
 biggest(array, 4) << "\n";
In this case biggest(array, 4) is a reference to array[1].
We can put it anywhere we can put array[1] including the left side
of an assignment.

For example, to zero the biggest element we can write:
 biggest(array, 4) = 0;

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page48

Constant Reference
Returns

Suppose we want to return the biggest element, but
prohibit the caller from changing it. Then we use a
constant reference return:
const int &biggest(int array[],
 const unsigned int array_size)
{
 // Usual junk
}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page49

Dangling References
The following program illustrates a “ dangling reference.”

const int &min(const int &i1,
 const int &i2){
 if (i1 < i2)
 return (i1);
 return (i2);
}

int main(){
 int &i = min(1+2, 3+4);

 return (0);
}

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page50

What's happening

create integer tmp1, assign it the value 1+2
create integer tmp2, assign it the value 3+4
bind parameter i1 so it refers to tmp1
bind parameter i2 so it refers to tmp2
call the function "min"
bind main's variable i so it refers to

the return value (i1 - a reference to tmp1)
// At this point i is a reference to tmp1
destroy tmp1
destroy tmp2

// At this point i still refers to tmp1

// It doesn't exist, but i refers to it.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page51

Overloaded Procedures

In C no two procedures could have the same name. C++ allows you to
define “ overload” procedures as long as their parameter list is
different.
For example:
int max(int i1, int i2)
 { return (i1 < i2) ? i2 : i1; }
float max(float f1, float f2)
 { return (f1 < f2) ? f2 : f1; }
In C you frequently see things like:
int max_int(int i1, int i2);
float max_float(float f1, float f2);
 In C++ these can be replaced by one function max.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page52

inline Procedures

The max function we’ ve just defined is very short. The overhead
to setup the parameters, make the call, and return from the call
takes more code than the function itself.
The inline keyword tells C++ that the functions are to be
expanded inline.
 inline int max(int i1, int i2)
 { return (i1 < i2) ? i2 : i1; }
So
 result = max(large, big);
does not generate any function call overhead.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page53

Default Parameters

Default parameter specification:
void draw_it(const rectangle &data,
 const float scale = 1.0)
 The function draw_it can be called as:
 // Draw a double sized rectangle
 draw_it(a_rectangle, 2.0);
or
 draw_it(a_rectangle);// Draw a normal sized rect.
The second case is the same as:
 // Draw a double sized rectangle
 draw_it(a_rectangle, 2.0);

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page54

Unused Parameter

Suppose we have a function that takes a single parameter and never
uses it:
void do_it(int it)
{
 // Do nothing
}
C++ will issue a warning about the unused parameter. To avoid this
warning, do not put in the name of the parameter:
void do_it(int)
Note: To program more clearly the parameter is often “ put in” as a
comment:
void do_it(int /* it */)

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page55

Call by Value
Parameters

Declaration: function(int var)
Can change inside function:Yes
Changes made inside function reflected in caller: No

Notes: Not efficient for passing structures or classes.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page56

Reference Parameters

Declaration: function(int &var)
Can change inside function:Yes
Changes made inside function reflected in caller: Yes

Notes: Efficient way of passing structures

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page57

Constant Reference
Parameters

Declaration: function(const int &var)
Can change inside function: No
Changes made inside function reflected in caller: N.A.

Notes:Efficient way of passing structures

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page58

Array Parameters

 Declaration:function(int var[])
Can change inside function: Yes
Changes made inside function reflected in caller: Yes

Note: Array parameters are always passed by reference

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page59

Address Parameters

Declaration: function(int *var)
Can change inside function: Yes
Changes made inside function reflected in caller:

See notes.
Note: Changes to the pointer itself are not reflected
in the caller. Changes to the data pointed to can be
made.
var = new_value; // Illegal
*var = 1; // Legal

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page60

Parameter Type
Summary

Type Declaration
Call by value function(int var)

Value is passed into the function, and can be changed inside the function, but the
changes are not passed to the caller.

Constant call by
value

function(const int var)

Value is passed into the function and cannot be changed.
Reference function(int &var)

Reference is passed to the function. Any changes made to the parameter are reflected in
the caller.

Constant Referencefunction(const int &var)
Value cannot be changed in the function. This form of a parameter is more efficient then
“constant call by value” for complex data types.

array function(int array[])

Value is passed in and may be modified. C++ automatically turns arrays into reference
parameters.

Call by address function(int *var)

Passes a pointer to an item. Pointers will be covered later.

Practical C++ ProgrammingPractical C++ Programming Copyright 2003 O'Reilly and Associates Page61

new and delete operators
The new operator creates a new variable from space in an area of memory
called the heap.
 item *item_ptr;
 item_ptr = new item;
It can allocate an array of items:
 item_array_ptr = new item[10];
The delete operator returns an area of memory to the heap. (It should not be
used after the delete.)

delete pointer;
// Where pointer is a pointer to a simple object
pointer = NULL;

The delete operator also works for arrays as well:
delete []array_pointer;
// Where pointer is a pointer to a array
array_pointer = NULL;

