

 �

�

1. Define “class.”

2. Where are the computers that are to be used for homework for this course?

3. What compiler are we using for this course?

Page 1

�

�

1. Define “Machine Language.”

2. Define “Assembly Language.”

3. Define “source code.”

4. Define “object code.”

5. Define “library.”

6. Define “linker.”

7. Define “executable program.”

8. How is assembly language different from machine language?

9. What does a compiler do?

10. How is a compiler different from an assembler?

11. What is the extension for source files on our machine?

12. What type of program is used to create “source code.”

13. What is the extension for object files on our machine?

14. What type of programs are used to produce object files?

15. What is the extension for the executable programs?

16. What type of files go into creating an executable program?

17. What type of program is used to create an executable program?

18. How do you access the on-line help system for your compiler?

Page 2

 �

�

 �

1. Why are comments required in a program?

2. Why must you write comments before or while you write the program, never after?

3. Which is better: 1) The underscore method of writing names, such as: this_is_a_var, or
2) The upper/lower case method: ThisIsATest?

Page 3

 �

�

 �

� �

1. Name and define the three elements of a program.

2. Why are comments required in a program?

3. return(0);

4. What punctuation character signals the end of each statement?

5. What statement to you use to print something to the screen?

6. What are the five simple C++ operators?

7. Evaluate the following C++ expressions:

a) 5 + 3 / 2 + 1
b) (5 + 3) / (2 + 1)
c) 8 % (3 * 4) + 8 / 3 - 9
d) 8 / (3 * 4 + 8 / 3 - 9)
e) 4 + 9 * 6 - 8
f) (11 % 7) / 3

8. What will the following statements print? (Assume i=5 and j=7.)

a) std::cout << i << '\n';

b) std::cout << "i" << '\n';

c) std::cout << i / j << '\n';

d) std::cout << "i=" << i;

e) std::cout << "i=" << i << '\n';

9. =

⋅

 �

10. What does it mean when you see the message “Warning: Null effect”?

11. Define “variable.”

12. Define “variable declaration.”

13. What are the three purposes for a variable declaration?

Page 4

14.
 �
 �
 � � �
 �

15. Define std::cout and use it in a C++ statement.

16. Define “assignment statement” and give an example.

17. What is the difference between a real and an integer variable?

18. Give an example of an integer division statement and a floating point division statement?

19. The same operator ‘/’ is used for both floating point and integer divides. How does the
compiler know which one to use?

20. A thermos keeps hot things hot and cold things cold. How does it know which one to do?

21. The standard character set, ASCII, handles 128 characters. Only 95 of these can be typed in
using the keyboard. What does a C++ programmer use to specify the none printing
characters?

22. Define “character variable” and show how a character variable can be declared and used.

23. What are the possible value of a boolean (bool) variable?

 �

24. 4.5 % 3.2

25. Why are real numbers called floating point numbers?

26. What “floats” in a floating point number?

27. What is the biggest integer variable that you can have on your machine?

28. What is the biggest floating point variable that you can have on your machine?

29. Why are integer variables exact and floating point variables inexact?

Page 5

 �

�

1.

2. What is the number of the last element of the following array?

int test[5];

3. What's the header file that's used to bring in the data definitions for C++ strings?

#include <string>

4. How do you concatenate two C++ style string?

5. What is the difference between a C style string and an array of characters?

6. Why must we use std::strcpy to assign one C style string to another?

7. �

8. Can the size of any array change during the execution of a program?

9. Can the length of a string variable change during the execution of a program?

10. What happens if you try to read a C++ style string using std::cin and the >> operator?
(Try it!) What about the C style strings?

11. How many elements are allocated for the multiple dimension array:

int four_dimensions[25][86][48][96];

Bonus question: Why will you probably never see a declaration like this in a real program?

12. Define the following:

13. static_cast<int>(very_short)
 � � �
int

14. Define side effect.

15. Why are side effects bad things?

Page 6

 �

�

1. Define the following:

a) Branching Statements
b) Looping Statements
c) if statement
d) else clause
e) relational operator
f) logical operator
g) while statement
h) Fibonacci number
i) break statement

Page 7

 The Programming Process
 � �

� �

1. Describe the various steps of the programming process:

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

2. Why do we put each program in its own directory?

3. What is “Fast Prototyping?”

4. What is the make utility and how is it used?

5. Why is a “Test Plan” necessary?

6. What is “Electronic Archeology?”

7. �

8. What is grep and how would you use it to find all references to the variable total_count?

Page 8

 � � �

� �

1. Why do C++ programs count to five by saying “0, 1, 2, 3, 4?” Why should you learn to count
that way?

2. Write a for statement to zero the following array:

int data[10];

3. // Fall through

4. Why do we always put a break at the end of each switch?

5. What will continue do inside of a while?

6. What will continue do inside of a for?

7. �

8. What will break do inside of a while?

9. What will break do inside of a for?

10. What will break do inside of a switch? (This is not a trick question.)

11. �

Page 9

 �

�

1. Define “Variable Scope.”

2. Define “Variable Storage Class.”

3. Why are hidden variables a bad idea?

4. What is the scope of a function’s parameters?

5. What is the class of a function’s parameters?

6. The keyword static changes a local variable’s storage class from __________ to __________.

7. Why are all global variables permanent?

8. When is the following variable created, initialized, and destroyed?

int funct(void) {
 int var = 0 // The variable in question
 //

9. When is the following variable created, initialized, and destroyed?

int funct(void) {
 static int var = 0 // The variable in question
 //

10. When is the following variable created, initialized, and destroyed?

int var = 0 // The variable in question
int funct(void) {
 //

11. Define namespace.

12. What is the name of the namespace we've already used in this book for cin and cout?

13. Define “reference.”

14. What is binding and when does it occur?

15. What is the difference, if any, between the type of values returned by the following two
functions:

int func1(void)
const int funct2(void)

Page 10

16. What is the difference, if any, between the type of values returned by the following two
functions:

int &fun1(void)
const int &fun2(void)

17. Which parameters in the following function can be modified inside the function:

void fun(int one, const int two, int &three, const int &four);

18. In the previous question, which parameters, when changed, will result in changes made to the
caller’s variables?

19. Which parameters in the following function can be modified inside the function:

void fun(int one[], const int two[]);

20. In the previous question, which parameters, when changed, will result in changes made to the
caller’s variables?

21. Define “Dangling Reference.”

22. Why are dangling references a bad thing?

23. Can we overload the square function using the following two function definitions?

int square(int value);
float square(float value);

24. Can we overload the square function using the following two function definitions?

int square(int value);
float square(int value);

25. Define “default parameters.”

26. Why must default parameters occur at the end of a parameter list?

27. What does the keyword inline do?

28. What programming technique was used to solve the “calculator problem” of Chapter 7, The
Programming Process?

29. Define “Structured Programming.”

30. Describe “Top down programming.”

31. Describe “Bottom up programming.”

32. Define “recursion.”

Page 11

33. What are the two rules you must follow to make a recursive function?

1) There must be an ending point. 2) Each stage of the function must make the problem
simpler.

Page 12

 The C++ Preprocessor

 �

�

1. Define #define.

2. What is the difference between a simple #define macro and a const declaration?

3. When would you use conditional compilation?

4. Would you ever use conditional compilation for something other than debugging?

5. What is the difference between a parameterized macro and a simple macro?

6. What is the difference between a macro and a normal function?

7. What is the difference between a macro and an inline function?

8. Can the C++ preprocessor be run on things other than C++ code? If so what?

9. Why do we not want to use macros to define things like:

#define BEGIN {
#define END }

Page 13

 Bit Operations

�

1. Describe the difference between bitwise and (&) and logical and (&&). Give an example of
each.

2. Describe the difference between bitwise or (|) and logical or (||).

3. If you didn’t have an exclusive or operator (^) how would you create one out of the other
operators?

4. How would you test to see if any one of a set of bits is on? (This can be done without using
the logical and (&&) operation.)

5. How would we rewrite the set_bit function if we used an array of short int instead of an
array of char.

Page 14

 Advanced Types

 �

�

1. Define Structure.

2. Define Union.

3. How can we tell what type of data is currently stored in a union?

4. Define typedef.

5. Which is better typedef or #define? Why?

6. Define enum type.

7. List two reasons that enum types are better than defining a series of constants.

8. Define “bit field.”

9. What are the advantages and disadvantages of using bit fields.

Page 15

 Simple Classes

�

1. Define “class”

2. Define the “big four” member functions.

3. What are the hidden functions called in the following code:

void use_stack(stack &local_stack)
{
 local_stack.push(9);
 local_stack.push(10);
}

4. Why can you overload the constructor and not overload the destructor?

5. Which of the big four are generated automatically?

6. How do you prevent each of them from being generated automatically if you don’t explicitly
define one.?

Page 16

 More on Classes
 �

�
Principles of Mathematics part II, chapter 11, section iii, 1903

1. Define “friend.”

2. Describe an example when you would use a “friend” function.

3. Define “constant member functions.”

4. Define “constant member variable.”

5. How do you initialize the constant member variables of a class?

6. Define “static” member variables.

7. Why are you able to access static member variables using the class::var syntax you cannot
use the same syntax for ordinary member variables?

8. Define “static member function.”

9. Why are static member functions prohibited from accessing ordinary member variables?

10. Why can they access static member variables?

Page 17

 Simple Pointers
The choice of a point of view is the initial act of culture.

�

1. Define “pointer.”

2. How is a pointer different from a thing?

3. How many pointers can point to a single thing?

4. What happens if you assign a pointer NULL and then try and dereference it?

5. Are pointers more efficient than arrays?

6. Are pointers more risky to use than arrays?

7. Which of the preceding two questions is the more important?

Page 18

 File Input/Output
 �

�

1.
 � �

2. Define std::cin, std::cout, and std::cerr.

3. Define std::ifstream.

4. Define std::ofstream.

5. How can we tell if a write worked?

6.

7. What’s the difference between std::getline and the >> string operation?

8. What does sizeof do?

9. Write a C++ program fragment to write out a variable containing the value “3” as “0003”.

10. Why are graphic images almost always stored as binary files?

11. One type of image that’s stored as an ASCII file is an X icon. Why is it ASCII?

12. What’s the difference between 0 and ‘0’?

13. What type of end of line is used on your machine?

14. Someone took a text file from DOS and moved it to UNIX. When they tried to edit it a lot of
control-M’s (^M) appeared at the end of each line. Why?

15. Why is buffering a good idea?

16. When is it not a good idea?

17. Why is the C style std::printf more risky to use than the C++ style std::cout?

Page 19

 Debugging and Optimization
 �

� �

1. �

2. Describe your hardest bug and what you did to fix it.

3. What happens when you try to divide by 0?

4. What happens when you attempt to dereference the NULL pointer?

5. What happens when you modify the data pointed to by the NULL pointer?

6. What happens when you write a program that does infinite recursion?

7. Define std::flush..

8. Define “Confessional Method of Debugging.”

9. Define “Loop ordering.”

10. Define “Reduction in Strength.”

11. Write a program that divides an integer variable by 10 a thousand times and time how long it
takes. How long does it take to divide the variable by 16?

Page 20

 Operator Overloading

 �

�

1. Define “overloading.”

2. Define “operator overloading.”

3. What’s the difference between x++ and ++x?

4. How do you tell them apart when defining the operator functions?

5. What is casting?

6. Why should you not overload the casting operators? What should you use instead? Why?

Page 21

 �

� �

�

1. Define “Overflow.”

2. Can you have overflow with integer calculations?

3. Define “Underflow.”

4. Can you have underflow in integer calculations?

5. What’s the biggest floating point number that can be represented on your machine.

6. On your pocket calculator what does 1-(1/3)-(1/3)-(1/3) equal?

7. Why do you never want to use floating point for money?

Page 22

 �

�

1. Define “Linked List.”

2. What would you use a linked list for?

3. Define “Double-linked List.”

4. What can a double-linked list be used for that a linked list cannot.

5. Define “binary tree.”

6. What are trees good for?

7. How would you delete an element from a tree?

Page 23

Chapter 21: Advanced Classes
 �

�

1. Define “derived class.”

2. Define “base class.”

3. Can a class be both derived and base?

4. Define “virtual function.”

5. Define “pure virtual function.”

6. Describe how to implement virtual functions using function pointers. (This is what C++ does
internally.)

7. Define “abstract class.”

8. Why can’t you use an abstract class to define a variable?

Page 24

Chapter 22: Exceptions
 � � �

�

1. Define “exception.”

2. Define “try.”

3. Define “catch.”

4. Define “throw.”

Page 25

Chapter 23: Modular Programming
 �

�

1. Define “header file.”

2. What should go in a header file? Why?

3. What should not go in a header file? Why?

4. Define “extern.”

5. Define “static.” (Warning: It’s used for a lot of things.)

6. Define “infinite array.”

Page 26

 � �

— Shakesphere, Othello Act V

1. Define “template.”

2. When does a template cause code to be generated?

3. What is a function specialization?

4. What is a class specialization?

5. Define "export"?

6. Name a compiler which implements the "export" directive correctly.

Page 27

Chapter 25: Standard Template Library
Goodness and evil never share the same road, just as ice and charcoal never share the same container.

— Chinese proverb

1. Define “STL Container.”

2. What are the differences between a STL vector and a C++ array?

3. How do you check to see if an iterator has reached the end of a container?

4. What's stored in a map?

Page 28

Chapter 26: Program Design
If carpenters made houses the way programmers design programs, the first woodpecker to come along would destroy all of

civilization

— Traditional computer proverb

Review Questions
1. Name and define three design goals that should be a part of any program's design.

2. What are other design factors that might be considered.

3. MS/DOS was designed for a 640K PC with 360K floppies as it's primary storage device. Did
the design of the operating system make it easy to expand the system for today's modern
computers?

4. What makes a good module?

5. What is information hiding?

6. Why are global variables considered bad?

7. Are all global variables bad?

8. One of the problems with C++ is that a class must expose implementation information to
modules using that class. Where is this implementation information located?

Page 29

 � � �
�

1. Describe the programming process used to create the program created in this chapter. Explain
what worked and what didn’t. If something didn’t work, what can be done to fix the problem?

Page 30

 �

�

1. Define “K&R Style Functions.”

2. Define malloc.

3. Define free.

4. Why should you never use malloc on a class?

5. Why should you never use free on a class?

6. How do you initialize a structure to be all zeros? How do you initialize a class to be all zeros?

7. Define setjmp and longjmp.

8. What are the dangers associated with using these functions?

Page 31

 �

�

Page 32

 �

�

1. Why are comments required in a program?

2. Why must you write comments before or while you write the program, never after?

3. Which is better: 1) The underscore method of writing names example: this_is_a_var, or
the upper/lower case method: ThisIsATest? (Note this is a religious issue and has no right
answer.)

4. Define std::cout and use it in a C++ statement.

5. Define the following:

6. Why must you use the notation int(very_short) to write a very short number (aka. a
character variable)? What would happen if you wrote it out without the int wrapper?

7. Define side effect.

8. Why are side effects bad things.

9. When is the following variable created, initialized and destroyed?

int funct(void) {
 int var = 0 // The variable in question
 //

10. When is the following variable created, initialized and destroyed?

int funct(void) {
 static int var = 0 // The variable in question
 //

11. When is the following variable created, initialized and destroyed?

int var = 0 // The variable in question
int funct(void) {
 //

12. Define “reference”?

13. What is binding and when does it occur?

Page 33

14. What is the difference, if any, between the type of values returned by the following two
functions:

int func1(void)
const int funct2(void)

15. What is the difference, if any, between the type of values returned by the following two
functions:

int &fun1(void)
const int &fun2(void)

16. Which parameters in the following function can be modified inside the function:

void fun(int one, const int two, int &three, const int &four);

17. In the previous question, which parameters when changed will result in changes made to the
caller’s variables?

18. Which parameters in the following function can be modified inside the function:

void fun(int one[], const int two[]);

19. In the previous question, which parameters when changed will result in changes made to the
caller’s variables?

20. Define “Dangling Reference.”

21. Why are dangling references a bad thing?

22. Can we overload the square function using the following two function definitions?

int square(int value);
float square(float value);

23. Can we overload the square function using the following two function definitions?

int square(int value);
float square(int value);

24. Define “default parameters.”

25. What does the keyword inline do?

26. What programming technique was used to solve the “calculator problem” of Chapter 7, The
Programming Process.

Page 34

