
C Elements of Style Draft Version 0.8 by Steve Oualline

f. You
foot.

com-
error

y reli-

).

ment

on-

t

Chapter 6: Preprocessor
The C preprocessor provides many additional features not found in the language itsel

can use these to create constants, to include data from other files, to shoot yourself in the

Problems with preprocessors are difficult to spot because they are not obvious Even the
piler may misreport preprocessor errors. For example, the following program generates an
on Line 5 when the problem is really a bad#definestatement on Line 1.

1 #define VALUE_MAX 300 ++ 5 /* Problem is here */
2
3 void check(int value)
4 {
5 if (value > VALUE_MAX) {
6 printf("Value %d is out of range\n", value);
7 abort();
8 }
9 }

Good style is the best defense against preprocessor efforts. It is extreme important. B
giously following the rules discussed here, you can catch errors before they happen.1

Simple Define Statements
One of the uses of the#definestatement is to define simple constant format is this:

#define SYMBOL value /* comment */

TheSYMBOLis any valid C symbol name (by convention,#definenames are all uppercase
Thevaluecan be a simple number or an expression.

Like variable declarations, a constant declaration needs a comment explains it. This com
helps create a dictionary of constants.

Some examples:

/* Max number of symbols in a procedure */
#define SYMBOL_MAX 500

/* The longest name handled by this system */
#define NAME_LENGTH 50

Rule 6-1:

#defineconstants are declared like variables. Always put a comment describes the c
stant after each declaration.

1. Religion, noun. Something a programmer gets after working until two in the morning only find a bug tha
wouldn't have been there had he or she religiously followed the rules.
c06.doc - 87 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

fol-

eses.

e

Rule 6-2:

Constant names are all upper-case.

Constant expressions
If the valueof a #definestatement is a compound expression, you can run problems. The

lowing code looks correct, but it hides a fatal flaw.

/* Length of the object (inches) (partl=10, part2=20) */
#define LENGTH 10 + 20 /* Bad practice */

#define WIDTH 30 /* Width of table (in inches) */

/*..... */
/* Prints out an incorrect width */
printf("The area is %d\n", LENGTH * WIDTH);

Expanding theprintf line, you get:

printf("The area is %d\n", LENGTH * WIDTH);
printf("The area is %d\n", 10 + 20 * WIDTH);
printf("The area is %d\n", 10 + 20 * 30);

This another example of how the C preprocessor can hide problems. ClearlyLENGTHis
10+ 20, which is 30.So LENGTH is 30, right? Wrong.LENGTH literally 10 + 20 , and:

10 + 20 * 30

is vastly different from:

30 * 30

To avoid problems like this, always surround all#defineexpressions with parenthesis (()).
Thus, the statement:

/* Length of the object (inches) (partl=10, part2=20) */
#define LENGTH 10 + 20 /* Bad Practice */

Becomes:

/* Length of the object (inches) (partl=10, part2=20) */
#define LENGTH (10 + 20) /* Good Practice */

Rule 6-3:

If the value of a constant is anything other than a single number, enclose it in parenth

#define constants vs. consts
In ANSI C constants can be defined two ways: through the#definestatement and through us

of theconstmodifier. For example, the following two statement, are equivalent:
c06.doc - 88 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

rt

ent:

a
t line.

ra-
ld be

and
#define LENGTH 10 /* Length of the square in inches */
const int length = 10; /* Length of the square in inches */

Which statement should you use? Theconstdeclaration is better because it is in the main pa
of the C language and provides more protection against mistakes.

Consider the following example:

#define SIZE 10 + 20 /* Size of both tables combined */
const int size = 10 + 20; /* Size of both tables combined */

As you've already seen, the#define statement is a problem.SIZE is a macro and always
expands to 10+ 20. The const int size is an integer. It has the value 30. So while the statem

area = SIZE * SIZE: /* Mistake */

generates the wrong number, the statement:

area = size * size: /* Works */

generates the right number. So theconst declaration is less error-prone. Also, if you make
mistake in defining aconst,the compiler generates an error message that points at the correc
With a#define,the error appears when the symbol is used, not when it is defined.

Then why do we have the#define? Because early compilers did not recognize const decla
tions. There is still a lot of code out there that was written for these compilers and that shou
modernized.

Rule 6-4:

The use ofconst is preferred over#definefor specifying constants.

#define vs. typedef
The#definedirective can be used to define types, such as:

#define INT32 long int /* 32 bit signed integer type */

Thetypedef clause can be used in a similar manner.

typedef long int int32; /* 32 bit signed integer */

The typedef is preferred over the#definebecause is better integrated into the C language,
it can create more kinds of variable types than a mere define.

Consider the following:

#define INT_PTR int /* Define a pointer to integer */
typedef int *int_ptr; /* Define a pointer to an integer */
INT_PTR ptr1, ptr2; /* This contains a subtle problem */
int_ptr ptr3, ptr4; /* This does not */

What's the problem with the lineINT_PTR ptr1, ptr2 ? The problem is thatptr2 of
type integer, not a pointer to integer. If you expand this line, the problem, comes apparent:
c06.doc - 89 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

acro:

ainte-

ro-

en a
m, the
INT_PTR ptr1, ptr2; /* This contains a subtle problem */
int * ptr1, ptr2; /* This contains a subtle problem */

Problems like this can be avoided by usingtypedef.

Rule 6-5:

When possible, usetypedef instead of#define.

Abuse of #define directives
It is possible to use #define directives for things other than constants. For example, the m

#define FOR_EACH_ITEM for (i = first; i < last; ++i)

can define a standard for loop. This can be used in place of a regular for.

FOR_EACH_ITEM
process_item(i);

You can even go so far as to create macros that make your C code look like Pascal.

#define BEGIN I
#define END I

/*... */
if (x == Y)

BEGIN
/ *... * /

END;

The problem with this approach is that you are obscuring the C language itself. The m
nance programmer who comes after you will know C, not a half-Pascal half-C mongrel.

Even the simpleFOR_EACH_ITEMmacro hides vital C code. Someone else reading the p
gram would have to go back to the definition ofFOR_EACH_ITEMto figure out what the code
does. By using the code instead of a macro, no lookup is necessary,

You can easily understand the C code that goes into this:

for (i - first; i < last; ++i)
process_item(i);

Rule 6-6:

Don't use#defineto define new language elements.

Keywords and standard functions
Defining new language elements is one problem. A far more difficult problem occurs wh

programmer redefines existing keywords or standard routines. For example, in one progra
author decided to create a safer version of the string copy routine:
c06.doc - 90 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ed at

ame-
m

in a

ike
three
.”

with
#define strcpy(s1, s1) \
x_strcpy(s1, s2, sizeof(s1), sizeof(s2))

This worked great until the program was ported. Then the program mysteriously bomb
the code:

/* This lines hangs the system */
strcpy(name, "noname.c");

The programmer performing the port was baffled. There was nothing wrong with the par
ters tostrcpy.And of course, becausestrcpyis a standard function, there Shouldn't be a proble
with it.

But in this case, strcpy is not a standard function. It's a non-standard macro that results
great deal of confusion.

Think about how difficult it would be to find your way if someone gave you directions l
these: “When I say north I mean west, and when I say west I mean north. Now, go north
blocks, turn west for one (when I say one I mean four), and then east two. You can't miss it

Rule 6-7:

Never use#defineto redefine C keywords or standard functions.

Parameterized Macros
The#definemay have arguments. For example, the following macro doubles a number:

/* Double a number */
#define DOUBLE_IT(number) (2 * (number))

Enclosing the entire macro in parenthesis avoids a lot of trouble similar to the problems
simple#defines.

Rule 6-8:

Enclose parameterized macros in parentheses.

In the next example, the macroSQUAREis supposed to square a number:

/* Square a number */
#define SQUARE(X) (x * x)
/* Bad practice, no () around parameter */

The invocation of the macro:

a = SQUARE(1 + 3);

expands to:

a = (1 + 3 * 1 + 3);

which is not what was expected. If the macro is defined as:
c06.doc - 91 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

en

tate-
/* Square a number */
#define SQUARE(X) ((x) * (x))

Then the expansion will be:

a = ((l + 3) * (1 + 3));

Rule 6-9:

Enclose each argument to a parameterized macro in parenthesis.

Multi-line Macros
The#definestatement can be used to define code as well as constants. For example:

/* Print current values of registers (for debugging) */
#define PRINT_REGS printf(“Registers AX=%x BX=%x\n”, AX,BX);

This is fine as long as the target of the#defineis a single C statement. Problems occur wh
multiple statements are defined. The following example defines a macroABORTthat will print a
message and exit the system. But it doesn’t work when put inside anif statement.

/* Fatal error found, get out of here */
#define ABORT print(“Abort\n”); exit(8);

/*.... */
if (value > LIM)

ABORT;

problem can easily be seen when we expand the macro:

if (value > LIM)
printf(“Abort\n”); exit(8);

Properly indented, this is:

if (value > LIM)
printf(“Abort\n”);

exit(8);

This is obviously not what the programmer intended. A solution is to enclose multiple s
ments in braces.

/* Fatal error found, get out of here */
#define ABORT { printf("Abort\n"); exit(8);)

/* Better, but not good */

This allows you to use the ABORT macro in anif, like this:

if (value > LIMIT)
ABORT;

Unfortunately, it causes a syntax error when used with anelse:
c06.doc - 92 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

,

e

es the

wing
if (value > LIMIT)
ABORT;

else
do_it();

Thedo/while statement comes to the rescue. The statement:

do {
printf("Abort\n");
exit(8);

} while (0);

executes the body of the loop once and exits. C treats the entiredo/while as a single statement
so it's legal inside aif/elseset.

Therefore, properly defined, the macro is:

/* Print an error message and get out */
#define ABORT \

do { \
printf("Abort\n"); \
exit(8); \

} while (0) /* Note: No semicolon */

Rule 6-10:

Always enclose macros that define multiple C statements in braces.

Rule 6-11:

If a macro contains more than one statement, use a do/while structure to enclose th
macro. (Don't forget to leave out the semicolon of the statement).

When macros grow too long, they can be split up into many lines. The preprocessor us
backslash (\) to indicate “continue on next line.” The latestABORTmacro also uses this feature.

Always stack the backslashes in a column. Try and spot the missing backslash in the follo
two examples:
c06.doc - 93 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

en.

ro that

ames,

ting a
/* A broken macro */
#define ABORT \

do {
printf("Abort\n"); \
exit(8); \

} while (0)

/* Another broken macro */
#define ABORT \

do { \
printf("Abort\n"); \
exit(8);

} while (0)

The mistake in the first example is obvious. In the second example, the problem is hidd

Rule 6-12:

When creating multi-line macros, align the backslash continuation characters (\) in a col-
umn.

Macros and Subroutines
Complex macros can easily resemble subroutines. It is entirely possible to create a mac

looks and codes exactly like a subroutine. The standard functionsgetc andgetchar are actu-
ally not functions at all, but macros. These types of macros frequently use lower-case n
copying the function-naming convention.

If a macro mimics a subroutine, it should be documented as a function. That involves put
function-type comment block at the head of the macro:

/**
* next_char -- move a buffer pointer up one char *
* *
* Parameters *
* ch_ptr -- pointer to the current character *
* *
* Returns *
* pointer to the next character or NULL if none. *
**/

#define next_char(ch_ptr) \
/* ... definition ... */

Rule 6-13:

Always comment any parameterized macros that look like functions.
c06.doc - 94 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

items
.

hat
t, fol-

 fol-

f
source

direc-
nch
The #include Directive
Include files are used to define data structures, constants, and function prototypes for

used by multiple modules. it is possible to put code in an include file, but this is rarely done

Style for #Includes
,Most programs put the#include directives in a group just after the heading comments. T

way they are all together in a known place. System includes are enclosed in <>) come firs
lowed by any local includes (enclosed in"").

Example:

/**
* ... heading comments *
**/

/* System includes */
#include <stdio.h>
#include <alloc.h>
#include <string.h>

/* Local includes */
#include "key.h"
#include "table.h"
#include "blank.h"

Rule 6-14:

#includedirectives come just after the heading comments. Put system includes first,
lowed by local includes.

#include directives that use absolute file names, that is specify path and name, such as/user/
sam/program/data.handY:\DEVELOP\PROGRAM\DEFS.Hmake your program non-portable. I
the program is moved to another machine, even one using the same operating system, the
will have to be changed.

The solution is to never use absolute paths. The compiler can be pointed to the correct
tory by using the -I option. That way you need to change only one Makefile instead of a bu
of source files.

/* Non portable */
#include “/user/sam/program/data.h”

/* Portable, compile with “-I/user/sam/program” */
#include “data.h”

Rule 6-15:

Do not use absolute paths in#includedirectives. Let the -I compile opt
c06.doc - 95 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

me

e
t the

a

Protecting against double #Includes
Include files can contain#includedirectives. This means that you can easily include the sa

file twice. For example, supposedatabase.handsymbol.hboth need the filedefs.h. Then, putting
these lines:

#include “database.h”
#include “symbol.h”

in your program brings in two copies ofdefs.h.Defining a structure or type twice can caus
errors. So how do you avoid this problem? The solution is t conditional compilation to preven
double include from causing trouble.

#ifndef _DEFS_H_INCLUDED_
#define _DEFS_H_INCLUDED_

And at the end, insert this line:

#endif /* _DEFS_H_INCLUDED_ */

The first time through, _DEFS_H_INCLUDED_ is not defined.

The#ifndef causes the entire body of the file to be included and_DEFS_H_INCLUDED_to
be defined. Therefore, when the file is include the#ifndef kicks in, and the entire body of the file
is now#ifdef'ed out.

Conditional Compilation
The preprocessor allows you conditionally to compile sections o through the use of#ifdef,

#else, and#endif directives.

For example:

#ifdef DOS
#define NAME "C:\ETC\DATA”
#else /* DOS */
#define NAME "/etc/data”
#endif /* DOS */

Actually, the#elseand#endif directives take no arguments. The following them is entirely
comment, but a necessary one. It serves to match#elseand#endif directive with the initial#ifdef.

Note: Some strict ANSI compilers don't allow symbols after#elseor #endif directives. In
these cases, the comment DOS must be formally written as/* DOS */ .

Rule 6-16:

Comment#elseand#endif directives with the symbol used in the initial#ifdef or #endif
directive.

Use conditional compilation sparingly. It easily confuse the code.
c06.doc - 96 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

wo
ut not
#ifdef SPECIAL
float sum(float a[])
#else /* SPECIAL */
int sum(int bits)
#endif SPECIAL
{
#ifdef SPECIAL

float total; /* Total so far */
#else /* SPECIAL */

int total; /* Total number of bits */
#endif /* SPECIAL */

int i; /* General index */

#ifdef SPECIAL
total = 0.0;

#else /* SPECIAL */
total = 0;

#endif /* SPECIAL */

#ifdef SPECIAL
for (i = 0; a[i] != 0.0; ++i)

total += ((bits & i) != 0);
#else /* SPECIAL */

for (i = Ox8O; i != 0: i >> 1)
total += a[i];

#endif /* SPECIAL */

return (total);
}
/*

* A comment explaining that this
* is bad code would be redundant
*/

The structure of this function is nearly impossible to pick out. Actually, it consists of t
completely different functions merged together. There are a few lines of common code, b
many.
c06.doc - 97 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

the

ed in
mer

ing
float sum(float a[])
{

float total; /* Total so far */
int i; /* General index */

total = 0.0;

for (i = 0; a[i] != 0.0; ++i)
total += ((bits & i) != 0);

return (total);
}

int sum(int bits)
{

int total; /* Total number of bits */
int i; /* General index */

total = 0;

for (i = Ox8O; i != 0: i >> 1)
total += a[i];

return (total);
}

Avoid complex conditional sections. C is difficult enough to understand without confusing
issue. Usually it is better to write two entirely separate but clearer functions.

Rule 6-17:

Use conditional compilation sparingly. Don't let the conditionals obscure the code.

Where to define the control symbols
The control symbols for conditional compilation can be defined through#definestatements in

the code or the -D compiler option.

If the compiler option is used, the programmer must know how the program was compil
order to understand its function. If the control symbol is defined in the code, the program
needs no outside help. Therefore, avoid the compiler option as much as possible.

Rule 6-18:

Define (or undefine) conditional compilation control symbols in the code rather than us
the-D option to the compiler.
c06.doc - 98 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

n-

s. It

to do

he

of an
ead to

. The

er

gging.
Put the#definestatements for control symbols at the very front of the file. After all, they co
trol how the rest of the program is produced.

Use the#undef statement for symbols that are not defined. This serves several function
tells the program that this symbol is used for conditional compilation. Also,#undef contains a
comment that describes the symbol Finally, to put the symbol in, all the programmer needs
is change the#undef to #define.

#define CHECK /* Internal data checking enabled */
#undef DEBUG /* Not the debug version of the program */

Rule 6-19:

Put#defineand#undefstatements for compilation control symbols at the beginning of t
program.

Commenting out code
Sometimes a programmer wants to get rid of a section of code. This may be because

unimplemented feature, or some other reason. One trick is to comment it out, but this can l
problems:

/*-------Begin commented out section ------
open_database();
update_symbol_table(); /* Add our new symbols */
close_database();
/*-------End commented out section------*/

Unless your compiler has been extended for nested comments, this code will not compile
commented-out section ends at the line/* Add our new symbols */,not at the bottom of the exam-
ple.

Conditional compilation can accomplish the same thing, with much less hassle.

#ifdef UNDEF
open_database();
update_symbol_table(); /* Add our new symbols */
close_database();
#endif /* UNDEF */

Note: This will not work if the programmer defines the symbol (However, any programm
who defines this symbol should be shot.)

Rule 6-20:

Do not comment out code. Use conditional compilation (#ifdef UNDEF) to get rid of
unwanted code.

Sometimes the programmer wants to take out a section of code for a minutes for debu
This can be done in a similar way:
c06.doc - 99 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline

edi-
#ifdef QQQ
erase_backups();

#endif QQQ

The symbolQQQwas chosen because it is probably not defined and is easy spot with an
tor. This allows allQQQ lines to be quickly removed when the is found.

Rule 6-21:

Use#ifdef QQQ to temporarily eliminate code during debugging.
c06.doc - 100 - Modified: January 9, 1999 12:15 am

C Elements of Style Draft Version 0.8 by Steve Oualline
c06.doc - 101 - Modified: January 9, 1999 12:15 am

	Chapter 6: Preprocessor
	Simple Define Statements
	Constant expressions
	#define constants vs. consts
	#define vs. typedef
	Abuse of #define directives
	Keywords and standard functions

	Parameterized Macros
	Multi-line Macros
	Macros and Subroutines
	The #include Directive
	Style for #Includes
	Protecting against double #Includes

	Conditional Compilation
	Where to define the control symbols
	Commenting out code

