
C Elements of Style Draft Version 0.8 by Steve Oualline

build-
ing

iously,
unreli-
e code.

x for

st look

quire
ment

s in C

ent to
Chapter 5: Statement Details
Statements are basic building blocks of a C program, very much as sentences are basic

ing blocks of English writing. C provides programmers with a rich set of operations, allow
them to easily construct complex and powerful statements. This power must be used judic
however. It is far too easy to create complex, unreadable, sometimes indecipherable and
able C code. The rules discussed this chapter will help you create simple, readable, reliabl

Doing Nothing
One of the most overlooked statements is the “do nothing”, or null, statement. The synta

this statement is extremely simple:

Because it's so tiny, the null statement can easily be missed. For example, the code:

for (i = 0; string[i] != 'x'; ++i);

actually contains two statements: a for statement and a null statement. Most people mu
closely at this code to find the null statement.

That's bad style. The structure of a well-constructed program is obvious; it does not re
close inspection. We need to do something to the null statement to make it obvious, and com
lines easily provide the answer:

/* Do nothing */;

Now the code fragment looks like this:

for (i = 0; string[i] != 'x'; ++i)
/* Do nothing */;

With this construction, it is obvious that there are two statements.

Rule 5-1:

Always put a comment in the null statement, even if it is only

/* Do Nothing */;

Arithmetic Statements
C provides the programmer with a rich set of operators. There are 15 precedence rule

(&& comes before|| , etc.). For example, in this statement:

result = 1 << 5 + 1;

does the compiler perform the << or the + first? In other words, is the statement equival
this:

result = (1 << 5) + 1;

or to this:

result = 1 << (5 + 1);

it turns out that+ comes before<<, so the second version is correct.
c05.doc - 66 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

C for
roblem.

your
ple to

the

sing

atible
cla-

s not
n.

rs
The problem is that all these rules are difficult to remember. I've been programming in
over 10 years and I can't remember all the rules. I even had to look up the answer to this p

Even if you remember all the rules, have pity on the programmer who will be reading
code someday and who may not have your memory. I've devised a practical subset that's sim
memorize:

Rule 5-2:

In C expressions, you can assume that* , / , and % come before+ and- . Put parentheses
around everything else.

Following this rule, the problem expression becomes:

result = 1 << (5 + 1);

and in this statement, the order of operations is obvious.

Function Headings
All C code is contained in functions. The function heading defines its return type and

parameters.

Example:

float average(float total, int n_items)

There are actually two styles of function declarations. Throughout this book I've been u
the newer ANSI-C style. Older compilers allow only the traditional K&R style:

float average(total, n_items)
float total;
int n_items;

The ANSI-C style is preferred because it is more modem, less error prone, and comp
with C++. Reserve the use of the K&R style for old compilers that don't allow ANSI style de
rations.

Rule 5-3:

Use ANSI style function declarations whenever possible.

K&R style parameters
Some of the older C compilers force you to use K&R style parameters. This format doe

allow types in the function declaration. The types immediately follow the function declaratio

int total(values, n_values)
int values[];
int n_values;

Strictly speaking, the declarationint n_values is redundant. The type of all paramete
defaults toint . So you could have written this function as:
c05.doc - 67 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

am-
?

tween

me

d form
really

c-
/* Poor style */
int total(values, n_values)
int values[];

The problem with this is the problem that occurs with all defaults: you can’t tell the progr
mer's intent. Did the programmer intend to maken_value integer or leave out a declaration
When you explicitly declare all parameters, you eliminate an doubt.

Rule 5-4:

When using K&R parameters, declare a type for every parameter.

The type declarations for the parameters may be specified in any order. For example:

/* Poor style */
int total(values, n_values)
int n_values;
int values[];

The problem here is that you are fighting with the natural one-to-one correspondence be
parameters and their type declarations. It's a lot easier find things if they are put in order.

Rule 5-5:

When using K&R parameters, put the type declarations for the parameters in the sa
order as the occur in the function header.

Return type
In C, defining the function type is optional. If the type is not specified defaults toint. For

example:

int do_it(void);

and

do_it(void);

are equivalent in C. However, they are not the same to the programmer because I secon
is ambiguous. There can be two reasons for not specifying a function type: the return type
should beint, or the programmer forgot to define correct return type.

The explicit declaration of anint function type tells the reader of the program, “Yes, this fun
tion really does return anint.”

Rule 5-6:

Always declare a function type

It is possible to have an integer function that doesn't return anything. For example
c05.doc - 68 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

hat's
rs can-

vices
sity,
ing
list

ith-
do_more(void)
{

/*...... */
return;

}

Code like this can be found in older programs that pre-date the inventionvoid type. Good
style means that you tell the reader as much as possible

Rule 5-7:

Always declare functions that do not return a value asvoid.

Number of parameters
In theory, functions can have any number of parameters. In practice, not quite true. T

because while the compilers may be able to han function with 100 parameters, programme
not.

Long parameter lists remind me of a passage from the UNIX mag tape manual page: “De
/dev/rmt0, /dev/rmt4, /dev/rmt8, /dev/nrmt0, /dev /dev/nrmt8 are the rewinding low den
rewinding medium density, rewinding high density, non-rewinding low density, non-rewind
medium density, non-rewinding high density devices, respectively.” The problem with long
that you tend to lose track of things.

What's the device name of the “non-rewinding medium density” tape Try to figure it out w
out counting on your fingers.
c05.doc - 69 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

et a
than

f

Suppose you want to define a function to draw a line. You could write it like this:

/**
* DrawLine - Draw a line *
* draws a line from current point (set by *
* a previous call to GotoPoint to x,y) *
* *
* Parameters *
* x - Point we draw to (x co-ordinate) *
* y - Point we draw to (y co-ordinate) *
* style - line style (DASHED, SOLID) *
* brush - the type of brush to draw with *
* pattern - pattern for filling in the line *
* (STRIPPED, CROSS_HATCH, SOLID) *
* end_style - how to draw the ends *
* (CAPPED, FLUSH, ...) *
* front -- true if the line is to be drawn over *
* everything (false, draw in back) *
**/

void DrawLine(int x, int y,
style_type style, color_type color,
brush_type brush, pattern_type pattern,
end_style_type end_style, boolean front);

This is a disaster waiting to happen. All sorts of problems can easily occur. You forg
parameter, get the parameters out of order, or generally confuse things. Allowing no more
five parameters to a function can help alleviate this.

Rule 5-8:

Allow no more that five parameters to a function.

But now what do you do with the functionDrawLine?The solution is to take this herd o
parameters and stuff them into a structure:
c05.doc - 70 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

irst, it's
ithout

ers. If

wing
struct draw_style {
/* style for drawing (DASHED, SOLID) */

style_type style,

/* color (BLACK, WHITE, BLUE,...) */
color_type color,

/* the type of brush to draw with */
brush_type brush,

pattern_type pattern, /* pattern (STRIPPED, SOLID) */

/* line ends (CAPPED, FLUSH, ...) */
end_style_type end_style,

boolean front /* Front or back */
);

/**
* DrawLine - Draw a line *
* draws a line from current point (set by *
* a previous call to GotoPoint to x,y) *
* *
* Parameters *
* x - Point we draw to (x co-ordinate) *
* y - Point we draw to (y co-ordinate) *
* how - structure describing how to draw the line *
**/

void DrawLine(int x, int y, struct draw_style *how);

There are tremendous advantages to using structures for complex parameter, passing. F
easier to remember a structure's field name than it is a parameter's position number. (W
looking, can you tell ifpattern is the fifth or sixth parameter?)

Another advantage is that you need set only the fields that apply. You can ignore the oth
you used a long parameter list, you must have something for, each parameter.

Structures also make it easy to specify default value. For example, if you define the follo
defaults:

Field Default Value Integer value of default

style SOLID 0

color BLACK 0
c05.doc - 71 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

t all

at all.
ction:

erface
pose

hat it
then the statement:

memset(¤t_style, '\O', sizeof(struct style));

initializes the entire structure with default values. (Note: For this to work, the default mus
be zero.)

Passing parameters in globals
Another way of passing parameters to and from a function is to not use parameters

Instead, values are passed through global variables. For example, consider the following fun

/**
* GetTocken - read the next token *
* *
* Globals used *
* in_file -- file to get token from *
* token -- the token we just got *
* error - - 0 = no error *
* non-zero = error code *
**/

There are many problems with this type of parameter passing. First, obscures the int
between the function and the outside world. What's type of token? You can't tell. Also, sup
you want to handle multiple files Then your main code must keep reassigning in-file so t
points to what file you are using. For example:

in_file = main_file
GetToken();
main_token = token;

in_file = include_file;
GetToken();
include_token = token;

It's much easier to write:

brush SMALL_ROUND 0

pattern SOLID 0

end_style CAPPED 0

front FALSE 0

Field Default Value Integer value of default
c05.doc - 72 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

tion.
parts.

.

ely
ber and

with

” is a

t's too

d, it is
ilt into
main_token = GetToken(in_file, &error);
include_token = GetToken(include_file, &error);

A good function interface provides the user with a single, small interface to the func
When parameters are passed as globals, the function interface in divided into two (or more)
The global declarations are in on part of header file and the function declaration in another

Also, using these types of functions is difficult, requiring multiple statements. It's extrem
easy to get things wrong. When you pass parameters as parameters, C checks both the num
type of the parameters. These checks are a big help in improving reliability.

Rule 5-9:

Avoid using global variables where function parameters will do.

XView style parameter passing
XView programming uses a nearly unique parameter passing style. (It shares this style

the Suntools system from Sun.) For example, the functionXvSetis defined as:

XvSet(handle,
item, [value], [value], [value],
item, [value], [value], [value],
NULL);

The unique feature of this calling sequence is the use of variable parameter lists. “Item
XView attribute. The number of parameters that follow arc defined by the attribute.

For example, a typical XvSet function looks like this:

XvSet(popup,
PANEL_CHOICE_NROWS, 5,
PANEL_CHOICE_STRINGS,

"Start",
"Run",
"Abort",
"Pause",
"Continue",
NULL,

NULL);

The parameter PANEL_CHOICE_NROWSis followed by a single number, and
PANEL_CHOICE_STRINGSis followed by a list of names. This list is terminated by aNULL.
The entire parameter list is terminated by aNULL.

Programmers at Sun went to a lot of work devising this parameter-passing mechanism. I
bad they came up with something so poor. There are many problems with this style.

First, since the parameter list is variable length and the types of the variables are not fixe
impossible to check the type and number of parameters. This defeats any type-checking bu
C or lint.
c05.doc - 73 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

he list

that it
dom

d

ential

use

ambi-
The second problem occurs when a terminator is accidentally omitted. In the example, t
of names is terminated by aNULL. What would happen if you forgot it?

XvSet(popup,
PANEL_CHOICE_NROWS, 5,
PANEL_CHOICE_STRINGS,

"Start",
"Run",
"Abort",
"Pause",
"Continue",

NULL);

TheXvSetfunction reads the parameters, finds the NULL after the strings, and assumes
ends the strings.XvSetthinks more parameters follow, but there are none, so it reads ran
memory and goes crazy.

It would be much easier to turn the very generalXvSetinto a series of simpler, specialize
functions:

XvSetPanelNrows(popup, 5);
XvSetPanelChoiceStrings(popup, string_list);

This style of parameter passing lets C's type checking do its job and avoids many pot
problems.

Rule 5-10:

Avoid variable length parameter lists. They are difficult to program and can easily ca
trouble.

The if Statement
The if/elsestatement presents the programmer with some special problems. The first is

guity. There is a small “hole” in the syntax, as illustrated in the following example:

if (a)
if (b)

printf("First\n");
else /* Indentation is off */

printf("Second\n");

The question is, which if does the else go with?

A) It goes withif (a)

B) It goes with if (b)

C) The answer doesn't matter if I don't write code like this.
c05.doc - 74 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

to

arer.

ain of
s:

olu-
Give yourself ten points if you answered C. If you don't write silly code, you won't have
answer silly questions. (For the purist, theelsegoes with the nearestif. Answer B.)

By using braces, you can avoid the problem of ambiguity as well as make your code cle

if (a) {
if (b)

printf("First\n");
else

printf("Second\n");
}

Rule 5-11:

When anif affects more than one line, enclose the target in braces.

if/else chains
Frequently programmers need to implement a decision tree. This usually results in a ch

if/elsestatements. Using our current indentation rules, this results in code that looks like thi

if (code == ALPHA) {
do_alpha();

} else {
if (code == BETA) {

do_beta();
}else {

if (code ==GAMMA) {
do_gamma();

} else {
do_error();

}

This format adds needless complexity to your program, but how do you simplify it? The s
tion is to treat the word pairelse ifas a single keyword.

Rewriting the code using this rule results in this:

if (code == ALPHA) {
do_alpha();

} else if (code == BETA) {
do_beta();

}else if (code ==GAMMA) {
do_gamma();

} else
do_error();

This is at once simpler and easier to understand.
c05.doc - 75 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

con-

state-

than
and
Rule 5-12:

In an if chain, treat the wordselseif as one keyword.

if and the comma operator
The comma operator is used to combine statements. For example, the statements:

x = 1;
y = 2;

are treated as a single statement when written as:

x = 1, y = 1;

With simple statements, the comma operator is not very useful. However it can be used in
junction withif to provide the programmer with a unique shorthand.

if (flag)
x =1, y = 1;

This example is syntactically equivalent to:

if (flag) {
x = 1;
y = 1;

}

The problem with the comma operator is that when you use it you break the rule of one
ment per line, which obscures the structure of the program.

Rule 5-13:

Never use the comma operator when you can use braces instead.

The while Statement
Sometimes you want to have a loop go on forever (or until you hit abreak). There are two

common ways of specifying an infinite loop.

while (1)

and

for (;;)

The first (while) is preferred because it is more obvious and causes I confusion
for(;;) . The while statement gives the programmer a simple looping mechanism,
because it is so simple there are not a lot of style rule go with it.

Rule 5-14:

When looping forever, usewhile (1) instead offor(;;) .
c05.doc - 76 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

in the

some

dant-

't even

-

re not
Some programmers are tempted to put assignment statements inside awhile conditional, like
this:

/* Poor practice */
while ((ch = getc()) != EOF) {

/ *.... * /

This is breaks the no side effects rule. It is compact, but it obscures some of the logic
code. It is more effectively written like this:

/* Good practice */
while (1) {

ch = getc();
if (ch == EOF)

break;
/* ... */

This way, you can see the statements explicitly instead of having to extract the from
cryptic logic.

The do/while Statement
Thedo/while statement is rarely seen in practical C programs. That s because it's redun

there's nothing that you can do with ado/while that can't be done withwhile andbreak.

Because it is so rare, many programmers are surprised when they see it. Some don
know what to do with it. For these reasons, it is better to simply not use it.

Rule 5-15:

Avoid usingdo/while. Usewhile andbreak instead.

The for Statement
There are two common problems with use of thefor statement. They can have too little con

tent, or too much.

Missing parts of for loops
The for statement is actually three statements in one. Sometimes all three parts a

needed, so one or more is left blank:
c05.doc - 77 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ntly.
,
fact

also
state-

riable

ic:
/* Poor practice */
set_start(&start);

for (;start < end; start++) {
/ *... * /

There is a slight problem with this code. We've broken one of rules and did “nothing” sile
The initialization section of thefor is the empty statement “;”. But with just a “;” to guide you
how can you tell that the programmer didn't accidentally omit the initialization statement? In
you can't. But including the comment:/* Start already set */ tells you the omission
was intentional.

/* Better practice */
set_start(&start);

for (/* Start already set */;start < end; start++) {
/ *... * /

You also need a comment when there is no conditional clause. For example:

for (start = 0; /* break below */; start++) {

Overstuffed for loops
So far we've discussed what happens when you put too little information for loop. It's

possible to put in too much. As mentioned before, the c operator can be used to combine
ments in anif. This also works for statement. For example, the statement:

for (two = 2, three = 3, two < 50; two +=2, three += 3)

is perfectly legal. This statement causes the variable two to increment by 2 and the va
threeto increment by 3, all in one loop.

The notation is complex and confusing. However spreading out the loop clarifies the log

two = 2;
three = 3;
while (two < 50) {

/*.... */
two += 2;
three += 3;

}

You'll note that we have also changed thefor loop to awhile. It could be I as afor, but here the
while shows the structure of the code more clearly.

Stringing together two statements using the comma operator is sometimes useful in afor loop,
but such cases are rare.
c05.doc - 78 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ever

used

y not

three
a

Rule 5-16:

Use the comma operator inside a for statement only to put together two statements. N
use it to combine three statements.

The printf Statement
Theprintf function and its cousins are used for outputting the data. The function can be

to print one or more lines. For example:

printf("Beginning = %d\ncurrent = %d\n End=%d\n",
beginning, current, end);

Although compact, this obscures what is being output. You are writing three lines, so wh
use threeprintf statements?

printf("Beginning = %d\n", beginning);
printf(“Current = %d\n", current);
printf("End = %d\n", end);

Using this style, You can easily see the structure of the output.

Rule 5-17:

Use one printf per line of output.

Some people might argue that it take more time to do things this way since there are
function calls instead of one. Theprintf function is relatively slow. The amount of overhead in
function call takes 1/1000 of the time it takes to execute even a simpleprintf, so the overhead of
the two extra calls in negligible.

Another problem occurs with the use of theprintf, puts,andputc function, If you always use
printf, you have consistency. If you use a mixture ofprintf, andputc,then you increase efficiency
at the expense of consistency.

For example:
c05.doc - 79 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

edup
nce in
nsider-

am.

truc-
it up

per-
sing.
/* Consistent */
printf(“Starting phase II\n");
printf("Size = %d\n”, phase_size);
printf(“Phase type %c\n", phase_type);

/* Efficient */
puts("Starting phase II\n");
printf("Size =%d\n”, phase_size);
puts(“Phase type ");
putc(phase_type);
putc('\n');

In most cases, the increase in efficiency is very small. You probably won't notice any spe
in your program unless the code is executed thousands of rich in an inner loop. The differe
consistency is extremely noticeable, however. In most cases, readability and consistency co
ations outweigh any efficiency considerations.

Rule 5-18:

Unless extreme efficiency is warranted, use printf instead of puts and putc.

goto and Labels
Good programmers avoid thegoto statement because it breaks the structure of the progr

But every once in a while, even the best programmer needs to use agoto.

Thegoto label doesn't fit anywhere in the indentation rules. It's not part of the regular s
ture, so in order to give it a home, make it stand out, and generally get out of the way, put
against the left margin.

for (x = 0; x < 10; ++x) {
for (y = 0; y < 10; ++y) {

if (data[x][y] == look_for) {
goto found_it;

}
}

}
found_it:

Rule 5-19:

Startgoto labels in the first column.

The switch Statement
The switch statement is the most complex statement in C. It allows the programmer to

form a complex branching operation with a single statement, but sometimes it can be confu
c05.doc - 80 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

er

,

mer
Good programming style can make theswitch statement clearer and more reliable. Consid
the following statement:

/* Poor practice */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");

}

At the end of theBEGIN_STATEcase, there is nobreak, so the program falls through. Thus
when state = BEGIN_STATE , you'll get the messages:

Beginning
Processing

Is this intentional or accidental? From this code, there is no way to know. If the program
intends a fall through, he or she needs to tell people about it. The comment “/* Fall
Through */ ” would help immensely, yielding:

/* Not so poor */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");

}

Rule 5-20:

End every case in aswitch with abreak or the comment/* Fall Through */

Now consider the lastcase,FINISH_STATE . It doesn't need abreak because it's at the end
of the switch. However, you may want to consider putting in abreak to avoid future problems.
For example, you may want to add anothercase,perhaps one forABORT_STATE. This would
give you this:
c05.doc - 81 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

o

/* Surprise! */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");

case FINISH_STATE:
printf(“Aborting\n”);

}

You may have noticed the error: You need abreak after theFINISH_STATE case. If you get
in the habit of always putting in abreak at the end of aswitch statement, then you don't have t
worry about having to put it in during cod modifications.

Good habits are better than a good memory any day.

Rule 5-21:

Always put a break at the end of the last case in a switch statement.

Theswitch statement now looks like this:

/ * Almost there */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");
break;

case FINISH_STATE:
printf(“Aborting\n”);
break;

}

But what happens when state isSTATE_IDLE? There are several possible answers:

1. It is ignored

2. This is a ran-time error
c05.doc - 82 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ciden-
could

e cases.

that
for the
3. When you execute this code, state will never containSTATE_IDLE, so you don't
have to worry about what will happen.

As far as C is conceded, when state isSTATE_IDLE, then theswitch is ignored. But that's
not good enough. Did the programmer intentionally ignore out-of-range cases, or was it ac
tal? Again, you don't know. If the programmer intended bad states to be ignored, he or she
have written:

default:
/* Do nothing */
break;

This makes explicit what was implied.

Rule 5-22:

Always include adefault case in everyswitch, even if it consists of nothing but a null
statement.

But suppose the programmer says that state can never be anything other than the thre
Do you need a default for something that will never happen?

The answer is a resounding yes! Any experienced programmer will tell you that things
can never happen do happen. A good defensive programming technique is to include code
impossible:

default:
fprintf(stderr,

“Internal error. Impossible state %d\n”, state);
exit(1);

So the full-blown switch statement has evolved into this:
c05.doc - 83 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

the

use a
One

sy to
aining

der
ten-

fine a

n the
/* Good style */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");
break;

case FINISH_STATE:
printf(“Aborting\n”);
break;

default:
fprintf(stderr,

“Internal error. Impossible state %d\n”, state);
exit(1);

}

Your work on this statement can be summarized with this rule: Always put everything in
switch and make it all obvious.

Debug Printing
In spite of all the interactive debuggers, there are still times a programmer needs to

debuggingprintf. The problem is how to separate the debugging output from the real stuff.
trick is to begin all debug printouts with “##”:

printf("## state = %d\n", state);

This not only makes it easy to identify the debug statements in the log, it also makes it ea
remove them after the program is debugged. All you have to do is search for each line cont
“##” and delete it.

Shut up Statements
Always compile your programs will all possible warning enabled. If you are running un

UNIX, run your program through the program lint. You want the compiler to find as many po
tial problems in your code as possible, so you don't have to do it in the debugging stage.

Sometimes you get warning about things you know about. For example, you might de
variable copyright and never use it. Sometimes the compiler orlint will allow you to turn off a
warning for a single statement or variable. But sometimes it won't.

For example, there is no way to turn off the “Variable defined but not used” message i
Borland C compiler for a single variable. It's either the whole program or nothing.
c05.doc - 84 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline

mes-

only
le is
done.

cast
The solution to this problem is a set of statements designed solely to turn off warning
sages. For example:

static char *copyright = "Copyright 1992 SDO";
/ *.... * /
main()

(void)copyright; /* Avoid warning */

In this case the statement(void)copyright“uses” the variablecopyright. Thestatement itself
does nothing. In fact, the compiler knows it does nothing and generates no code for it. The
reason to put this statement in the code is to trick the compiler into thinking that the variab
being used so it won't issue a warning. Note that a comment is supplied to explain what was
Otherwise someone looking at this code later might think we're crazy.

The program lint gets upset when you don't use the value returned by a function. The
(void) can be used to telllint “I know that this function returns value, but I don't care.”

i = get_into; /* No warning */
get_into; /* Warning */
(void)get_into; /* No warning */
c05.doc - 85 - Modified: January 9, 1999 12:10 am

C Elements of Style Draft Version 0.8 by Steve Oualline
c05.doc - 86 - Modified: January 9, 1999 12:10 am

	Chapter 5: Statement Details
	Doing Nothing
	Arithmetic Statements
	Function Headings
	K&R style parameters
	Return type

	Number of parameters
	Passing parameters in globals
	XView style parameter passing

	The if Statement
	if/else chains
	if and the comma operator

	The while Statement
	The do/while Statement
	The for Statement
	Missing parts of for loops
	Overstuffed for loops

	The printf Statement
	goto and Labels
	The switch Statement
	Debug Printing
	Shut up Statements

