
C Elements of Style Draft Version 0.8 by Steve Oualline

t the

k at,
ized,

ark,
t have

ithin
y and

ied to
ick:
Chapter 4: Statement Formatting
Organization is the key to a well-written program. Good programming style helps presen

detail and logic of your program in a clear and easy-to-un stand manner.

Programming style and aesthetics are related. A well-written program pleasing to loo
read, and understand. Your goal in formatting a program is to make it look neat, well-organ
and beautiful.

Formatting the Body of the Program
The sentence is a basic unit of writing. A sentence ends with a terminator question m

exclamation point, or period. In C, the basic coding unit is statement. C statements do no
terminators, like sentences; rather. they separated from each other by semicolons (;).

Well laid-out programs allow the programmer to quickly and easily pick the statement w
the program. Running the code together, as shown in following example, hurts readabilit
clarity:

/* Poor programming practice */
biggest=-l;first=0;count=57;init_key_words();
if(debug)open_log_files();table_size=parse_size+lex_size;

How many statements are in this program fragment? It's hard to tell. programmer has tr
compact the program by putting as much on each line possible. It's much like the old limer

There was a young man from Iran

Whose verses just would not quite scan.

When someone asked why,

He gave this reply:

I like to put as many words on the last line as I possibly can.

It's easier to pick out the statements when there is only one statement per line

/* Better programming practice (still needs work) */
biggest=-l;
first=0;
count=57;
init_key_words();
if(debug)

open_log_files();
table_size=parse_size+lex_size;

Rule 4-1:

Write one statement per line.
c04.doc - 46 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ents,
rs and
g a C

en

r the

ith no

ve a

ad, but

ntences
There are still some problems with this fragment. True, it is much easier find the statem
but they are still hard to read. The problem is that our eyes are trained to treat a set of lette
symbols as one word. Writing sentencewithnospacesmakesitveryhardtoread. Similarly writin
statement

Rule 4-2:

Put spaces before and after each arithmetic operator, just like you put spaces betwe
words when you write.

/* Better programming practice (still needs work) */
biggest = -l;
first = 0;
count = 57;
init_key_words();
if(debug)

open_log_files();
table_size = parse_size + lex_size;

Adding spaces not only improves readability, it also helps to eliminate errors. Conside
statement:

*average = *total / *count; /* Compute the average */

Written without spaces this becomes:

*average=*total/*count; /* Compute the average */

Looks like the same statement, but it's not. Can you spot the problem?

The operators slash (/) and star (*) take on a new meaning when they are put together w
space. The operator /* is the beginning of a comment. So the result of the compression is:

*average=*total /* count; /* Compute the average */

If you have a good C compiler, you will get a warning about nested comments. If you ha
typical compiler, you'll get nothing.

Now back to our program fragment. Spaces makes the individual statements easier to re
the entire fragment is still something of a gray blob. We can do better.

This book is broken up into paragraphs. The paragraph markers separate one set of se
from another. In C, you can use blank lines to separate code into paragraphs:
c04.doc - 47 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

asantly

can't fit
impler

ines.

rule:
dicate
/* Better programming practice (still needs work) */
biggest = -l;
first = 0;
count = 57;
init_key_words();
if (debug)

open_log_files();
table_size = parse_size + lex_size;

The result is a section of code that uses spaces to separate the coding element into ple
arranged groups.

Simplifying complex statements
Sometimes a statement such as an assignment statement grows so long complex that it

on one line. In such cases, consider turning a complex statement into several smaller, s
statements.

For example, this is syntactically correct, but

/* This is a big mess */
gain = (old_value - new_value) /

(total_old - total_new) * 100.0;

It can be rewritten as three smaller statements:

/* Good practice */
delta_value = (old_value - new_value);
delta_total = (total_old - total_new);
gain = delta_value / delta_total * 100.0;

Rule 4-3:

Change a long, complex statement into several smaller, simpler statements.

Splitting long statements
An alternative to turning one statement into two is to split long statements into multiple l

Splitting is an art. The idea is to split the line in a way that does confusion. There is a
One statement per line. A two-line statement that rule, so always indent the second line to in
that it is a continuation.

Rule 4-4:

In a statement that consists of two or more lines, every line except the first must be
indented an extra level to indicate that it is a continuation of the first line.

For example:
c04.doc - 48 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

in the

I don't
ther.

of the

d of

ample
tes the

 low-

y not

sis is
net_profit = gross_profit - overhead -
cost_of_goods - payroll;

This example brings up another question: Do you put operators at the end of the line, as
previous example, or at the beginning of the next line?

net_profit = gross_profit - overhead
- cost_of_goods - payroll;

Actually, either method is acceptable as long as it is used consistently. That means that
get to dodge the issue if there is any reasonable basis for choosing one method over the o

There is a basis: majority rule. Most programmers prefer to put the operators at the end
line. So let's go with the majority preference and make it the rule:

Rule 4-5:

When writing multi-line statements, put the arithmetic and logical operators at the en
each line.

Splitting and parentheses.
Complex statements in C can contain several levels of parentheses. The following ex

shows a complex statement that contains many parentheses. The comment below it indica
nesting level.

result = (((x1 + 1) * (x1 + 1)) - ((y1 + 1) * (y1 + 1)));
/* nest 12333333322223333333321112333333322223333333321 */

The best place to break the line is where the nesting level is lowest; in this case at the- opera-
tor in the middle:

result =(((x1 + 1) * (x1 + 1)) -
((y1 + 1) * (y1 + 1)));

Rule 4-6:

When breaking up a line, the preferred split point is where the parenthetic nesting is
est.

The second line of the example is carefully indented so that the parenthesis line up. Wh
align it with the first parenthesis?

/* Don't program like this */
result =(((x1 + 1) * (x1 + 1)) -

((y1 + 1) * (y1 + 1)));

Notice that the lines seem to be a little off. That's because the first line's Level I parenthe
in the same column as the second line's Level 2 parenthesis.
c04.doc - 49 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ent’s

vious

e same

If
.
ies.
/* Don't Program like this */
result =(1(2(3x1 + 1) 3 * (3x1 + 1) 3) 2 -

(2(3y1 + 1) 3 * (3y1 + 1) 3) 2) 1;

Properly aligned (Level 2 to Level 2), the same statement looks like this:

result =(1(2(3x1 + 1) 3 * (3x1 + 1) 3) 2 -
(2(3y1 + 1) 3 * (3y1 + 1) 3) 2) 1;

Rule 4-7:

Align like level parentheses vertically.

Here's a more complex example:

flag = (result == OK) ||
((result == WARNING) &&

((code == WARN_SHORT) ||
(code == WARN_EOF))

);

The indentation in this example gives the programmer several clues about the statem
logic. First, there are two major clauses:

flag = (result == OK) ||

and

((result == WARNING) &&
((code == WARN_SHORT) ||

(code == WARN_EOF))
);

They are indented at the same level. The second clause goes on for four line This is ob
because its beginning and ending parenthesis have the sam indent. The two(code == lines
carry equal weight and are at the same level. Their beginning parenthesis are aligned in th
column.

As you can see, proper splitting and indentation of a multi-line statement c

Splitting a for statement.
A for statement is unique, since it is three statement

for (<initialization>; <condition>; <increment>)

The <initialization>, <condition>, and <increment>are three complete C statements.
these statements have any complexity at all, the entirefor statement is likely to overflow the line
Whenever afor grows too long for one line, split it first at the component statement boundar

For example, this line:

for (index = start; data[index] != 0; ++index)
splits like this:
c04.doc - 50 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

is

have

hich
e out.
a
Two-

ing it
,

for (index = start;
data[index] != 0;
++index)

Note that we've aligned the beginnings of the three substatements.

Rule 4-8:

Split longfor statements along statement boundaries.

In the previous example, we turned a one-linefor statement into three. But if the statement
short enough, can you limit it to two lines?

/* Poor practice */
for (index = start; data[index] != 0;

++index)

The answer is no. The problem is that this split is ambiguous. We could just as easily
written this:

/* Poor practice */
for (index = start;

data[index] != 0; ++index)

Consistency is part of good style. If you do things consistently, you set up expectations, w
is another way of saying you remove one detail that the reader of the program has to figur
Don't split afor statement one way one time and another the next. You can consistently splitfor
statement into three lines the same way every time, but there is no preferred two-line split.
line splits introduce inconsistency. Avoid them.

Rule 4-9:

Always split afor statement into three lines.

Splitting a switch statement.
Theswitch statement is the most complex statement in the C language. The rule for splitt

is very simple: Don't. If the index expression for aswitch statement grows too big for one line
split it into two different statements: an assignment and aswitch.
c04.doc - 51 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

for-

lue are

el.
For example:

/* Bad practice */
switch (state_list[cur_state].next_state +

goto_list[last_last] +
special_overrides) {

should be turned into:

/* Good practice */
switch_index = (state_list[cur_state.next_state +

goto_list[last_last] +
special_overrides);

switch (switch_index) {

Rule 4-10:

Writeswitch statements on a single line.

Conditional operators (? :).
When splitting an expression containing a conditional operation (? :), try to put the entire con-

ditional clause on a line by itself

/* Good practice (preferred) */
result = past-due +

(total-owed > 0) ? total-owed : 0;

Rule 4-11:

Keep conditionals on a single line if possible.

If the conditional clause itself is too long for one line, it can be split into three lines. The
mat is this:

(condition) ?
(true-value) :
(false-value)

Each line contains one component of the expression. Since the true-value and false-va
sub-sections of the conditional, their lines are indented.

Rule 4-12:

When splitting a conditional clause (? :), write it on three lines: the condition line, the
true-value line, and the false-value line. Indent the second and third line an extra lev
c04.doc - 52 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

com-
t in C
ffects.

ent.

d” to
ily have

ge of

ossi-

his.

mpiler.
timize

other
Side effects
When writing a children's story, you must keep the sentence structure simple and avoid

pound sentences. Well, a computer is not a child; it doesn't have that much intelligence. Bu
coding, you should do anything you can to simply the program. That means avoiding side e

A side effect is an operation that is performed in addition the main operation of a statem
For example, the statement:

current = count[index++]

assigns current a value and increments index. Look out. Any time you start using “an
describe what a statement does, you're in trouble. The same statement could just as eas
been written this way:

current = count[index]
index++;

This way, there are no side effects.

C allows very free use of the ++ and -- operators within other statements. Taking advanta
this freedom can create all sorts of problems. Consider the statement:

i = 0
out[i++] = in[i++];

In fact, consider it a test. Exactly what does this program do?

A) Evaluateout[i] asout[0] , incrementi (i is now 1), evaluatein[i] as
in[1] , incrementi (i is now 2), do the assignment (out[0] = in[1]).

B) Evaluatein[i] asin[0] , incrementi (i is now 1), evaluateout[i] as
out[1] , incrementi (i is now 2), do the assignment (out[1] = in[0]).

C) Evaluatein[i] asin[0] , evaluateout[i] asout[0] , incrementi (i is now
1), incrementi (i is now 2), do the assignment (out[0] = in[0]).

D) The code is compiler dependent, so the compiler carefully computes the best p
ble answer and then does something else.

E) If you don't write code like this, you won't have to worry about questions like t

This code is ambiguous, and the actual code generated can change from compiler to co
Sometimes the same compiler will generate different code depending on the state of the op
switch.

The answer, of course, is E.

Ambiguous code is not the only problem that can occur when ++ and -- are used within
statements. The statements
c04.doc - 53 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

signed

value
The

exe-

able,
nt to be

ke this
i = 2;
s = square(i++);

look innocent enough. But square is a macro designed to square a number:

#define square(x) ((x) * (x))

If you expanding the macro, you get this:

i = 2;
s = ((i++) * (i++));

Suddenly you see that i is not incriminated once as expected, but twice. And s an be as
the wrong value. Again, this statement is ambiguous.

You can avoid all these problems by writing the++ on a separate line:

i = 2;
s = square(i);
i++;

True, putting the ++ inside another statement does make for more compact code, but the
of compactness in C source code is minimal. You're striving for readability and reliability.
one-effect-per-statement rule improves both, especially reliability.

It also simplifies the program. What are the values of i and j after the following code is
cuted?

i = 0;
j = 0;
x = 0;
i = x++;
j = ++x;

The increment operator acts differently depending on where it is placed. In front of a vari
the increment is performed before the assignment. Incrementing after causes the assignme
performed first. So in the example,i is 0 (x before increment) andj is 2 (x after increment).

This code is a puzzle to some people. But you don't have to remember obscure details li
if you never write code like this. If you simplify the example, it is no longer a puzzle:
c04.doc - 54 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ts. For

y have

m is

er this

ug.
) and

ozen
i = 0;
j = 0;
x = 0;

i = x;
++x;
++x;
j = x;

Rule 4-13:

Avoid side effects.

Rule 4-14:

Put the operator ++ and -- on lines by themselves. Do not use ++ and -- inside other
statements.

Assignments in other statements
C also allows the programmer to put assignment statements inside other statemen

example:

/* Poor practice */
if ((result = do_it()) == 5)

printf(“It worked\n”);

This is another example of a side effect that needs to be avoided. You could just as easil
written this:

/* Good practice */
result = do_it();
if (result == 5)

printf("It worked\n");

The second form not only avoids the side effect, but it is simple and clear. The first for
compact, but remember — your goals are readability and reliability.

Unintentional assignments inside other statements can quickly cause trouble. Consid
example.

if (result = 5)
printf("It worked\n");

This fragment should print “It worked” only when result is 5. But the code contains a b
What it actually does is to assign 5 to result, check against (humm... no, 5 is not 0 this time
print unconditionally.

Experienced programmers recognize this as the old= vs.== bug. They remember it from the
cold, dark night when they stayed up till 2 in the morning staring the bug in they eye a d
times and not recognizing it the first eleven.
c04.doc - 55 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

reat

e like

se of
r more

it, but
he pat-
Novice programmers, be warned: you will make this mistake, and it will cause you a g
deal of pain.

This error is so common that now many compilers issue a warning when they see cod
this. For example:

Borland C++ Version 3.00
Copyright (c) 1991 Borland International
Warning test.c 5:
Possibly incorrect assignment in function main

Rule 4-15:

Never put an assignment statement inside any other statement.

When to use two statements per line
Although there is a rule — one statement per line — don't be fanatical about it. The purpo

the rule is to make the program clear and easy to understand. In some cases, putting two o
statements on one line improves clarity. For example, consider the following code:

/* Not as clear as it can be */

token[Ol.word = "if";
token[Ol.value = TOKEN_IF;

token[l].word = "while";
token[l].value = TOKEN_WHILE;

token[2].word = "switch";
token[2].value = TOKEN_SWITCH;

token[3].word = "case";
token[3].value = TOKEN_CASE;

This can easily be rewritten as:

/* Clearer */
token[O].word = "if"; token[O].value = TOKEN_IF;
token[l].word = "while"; token[l].value = TOKEN_WHILE;
token[2].word = "switch"; token[2].value = TOKEN_SWITCH;
token[3].word = "case"; token[3].value = TOKEN_CASE;

There is a pattern to this code. The first example obscures the pattern. You can still see
it's not as clear as in the second case, which is coded in two statement per line. To make t
tern clearer, the statements are organized in columns.
c04.doc - 56 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

o.

.

e logic

mbols
wing
ms of
boxes
oom.

aph-
, and
Rule 4-16:

If putting two or more statements on a single line improves program clarity, then do s

Rule 4-17:

When using more than one statement per line, organize the statement into columns

Logic and Indentation
Over the years many people have tried to develop a way to create a document makes th

and execution flow of a program easy to understand.

Flowcharts were an early attempt. They presented the program visually using special sy
to denote things like branch statements, input/output, termination. Figure 4-1 on the follo
page shows a sample flowchart. charts were excellent for small programs, but for progra
nominal size grew too big and bulky. (I remember seeing one that consisted of hundred
spread across a 6x5 foot grid of 11x13 inch paper. It took up whole wall of a conference r
Although it was impressive, no one could understand the whole thing.)

Another problem with early flowcharts was that at the time very I computers could do gr
ics. (Most couldn't even do lowercase text.) result, all flow charts had to be done by hand
redone if the program changed.
c04.doc - 57 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

could
When ALGOL and other structured languages were invented, people discovered that the
use indentation to represent levels of control This is used in C.

Figure 4-1: A small flow card

For example:

Start

Initialize

User Known?

Print report

Stop

Read in
old profile

Ask user for
profile information
c04.doc - 58 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

n the
tages
Short

es is
state-
while (count > 0) {
if (balance[index] == EOF_MARKER)

count =-1;
else

total += balance[index];
++index;

}

In this program fragment, you can easily see that the body of thewhile contains both theif
and the++index statement. The statementcount = -1 is indented an extra level, giving a
visual clue that it is part of theif.

There are several indentation styles, but they all indent one level for each level of logic.

Rule 4-18:

Indent one level for each new level of logic.

Indentation styles
There are many different styles of indentation, and a vast religious war being waged i

programming community as to which is best. I won't t take sides, but I will present the advan
and disadvantages of each style (Incidentally, the style used throughout this book is the
Form, chosen only because I’m used to it.)

Short form
In the Short Form, the open brace ({) is put at the end of a line. The text within the brac

indented one level. The close brace (}) is aligned with the beginning of the corresponding
ment.

Example:
c04.doc - 59 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

corre-

ffi-

p more
/* Short form indentation
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
printf("You owe %d dollars\n". total);
all_totals = all_totals + total;
if (total > 1000)

printf("You owe a lot\n");

The advantage of this style is that it doesn't waste vertical space. The problem is that
sponding braces are not put in the same column. For example, the brace that closes thewhile lines
up with the “w” in while, not with the brace at the end of the line. This makes it a little more di
cult to match braces.

Braces stand alone.
In the Braces Stand Alone method, all braces are placed on separate lines:

/* Braces stand alone */
while (! done)
{

printf("Processing\n");
next_entry();

}
if (total <= 0)
{

printf("You owe nothing\n");
total = 0;

}
else
{

printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf(“You owe a lot\n”);

The advantage of this is that the braces are aligned. The disadvantage is that it takes u
vertical space and tends to spread out the code.
c04.doc - 60 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

n the

acing

le line.

there
rectly.
Braces indented too.
This variation on the Braces Stand Alone method indents not only the statement withi

braces, but also the braces themselves:

/* Braces stand alone */
while (! done)

{
printf("Processing\n");
next_entry();
}

if (total <= 0)
{
printf("You owe nothing\n");
total = 0;
}

else
{
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;
}

if (total > 1000)
printf(“You owe a lot\n”);

This form of indentation is not as common as the other two. It also has the problem of sp
out the code somewhat.

Variations.
One variation on the standard indentation styles concerns if statements that affect a sing

For example:

if (total > 1000)
printf("You owe a lot\n");

This style of indentation can create confusion, as illustrated by the following

example:

/* Problem code */
if (index < 0)

fprintf(stderr,"Error: Index out of range\n");
exit (8);

At first glance, it looks like the program will print an error message only ifindex is out of
range. (That's what the programmer intended.) But on closer inspection, you'll notice that
are no braces enclosing the two statements under the if. In fact, the code is indented incor
c04.doc - 61 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

tate-

es of
Indented correctly, the code looks like this:

/* Problem code */
if (index < 0)

fprintf(stderr,"Error: Index out of range\n");
exit (8);

The problem is confusion between multi-line if controlled statements and single-line s
ments. To solve this problem, put single-line statements and theirifs on the same line:

if (total > 1000) printf("You owe a lot\n");

This makes very clear that theif affects only one line. The problem is that it makes theprintf
line a little more difficult to find and breaks the one-statement-per-line rule.

How much to indent
In this book I indent four spaces for each logic level. Why four? Here are some exampl

various indentations.
c04.doc - 62 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline
Two Spaces:
/* Short form indentation */
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf("You owe a lot\n");

Four Spaces:
/* Short form indentation */
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf("You owe a lot\n");

Eight Spaces:
/* Short form indentation */
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
c04.doc - 63 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

The

er.

ogram
m to a
mands.
of time it
like it,
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf("You owe a lot\n");

The advantage of a smaller indent is that you don't run into the right margin as quickly.
disadvantage is that it's hard to tell the various levels apart.

Larger indents are easier to read, but larger indents mean that you run out of room fast

Several researchers have studied this problem in detail. They started with the same pr
and indented it using different indent sizes. They then gave the various flavors of the progra
set of graduate students and told them each to enhance it by adding some additional com
The students had never seen the program before. The researchers measured time amount
took each student to understand and fix the program. As a result of this and other studies
they concluded that four spaces is the ideal indentation.

Rule 4-19:

The best indentation size is four spaces.
c04.doc - 64 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline
c04.doc - 65 - Modified: January 9, 1999 12:16 am

	Chapter 4: Statement Formatting
	Formatting the Body of the Program
	Simplifying complex statements
	Splitting long statements
	Splitting and parentheses.
	Splitting a for statement.
	Splitting a switch statement.
	Conditional operators (? :).

	Side effects
	Assignments in other statements
	When to use two statements per line

	Logic and Indentation
	Indentation styles
	Short form
	Braces stand alone.
	Braces indented too.
	Variations.

	How much to indent
	Two Spaces:
	Four Spaces:
	Eight Spaces:

