
C Elements of Style Draft Version 0.8 by Steve Oualline

nder-
u can

nition
e pro-

ich we
). But

their
bably
files

so
furry

ity

qua-
cians
tand for.
Chapter 3: Variable Names
In English, we put words together to make up sentences. The language is fairly easy to u

stand when you know what most of the words mean. Even if you don't know some words, yo
look them up in the dictionary.

Variables are the “words” for the C language. In a program, variables have a precise defi
and usage, but that definition and usage are different for each program. What's worse, som
grammers tend to use abbreviations, even for simple things. Shakespeare wrote, “That wh
call a rose by any other name would smell as sweet.” (Romeo and Juliet, Act II, Scene 2
calling a rose an “RZ” creates needless confusion.

Bureaucratize is a prime example of how things get mixed up when people start using
own unique languages. Government agencies don't fire people, they “dehire” them. That pro
wouldn't be confusing to the person being dehired, but consider this example: The Army
“Zipper” under “I.” why? Zipper used to be a trade name, making it illegal for Army filing,
they use the generic name “Interlocking cloth fastener.” These are the same people who file
teddy bears under the label “Bears, fur, Edward.”

Call a spade a spade. Don't call it “spa”, “s1”, or “pronged digging implement.” Simplic
and a firm grasp of the obvious are necessary for good C programming.

Rule 3-1:

Use simple, descriptive variable names.

A Brief History of the Variable
Early computers were initially used for solving complex and repetitive mathematical e

tions. Not surprisingly, early programming languages looked a lot like algebra. Mathemati
generally use single character variable names because they don't care what the variables s
(They're not supposed to; that's what it means to be a mathematician.)

For example, the equation for the area of a triangle is:

wherea is the area of the triangle,b is the base, andh is the height.

a
1
2
---bh=
c03.doc - 25 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

r line

bols to
pages
more

roved.

har-
use a
let-

st be

. But
g the

to use

s ver-
This sort of notation is highly compact. You can express a lot on a single line.

However, it isn't very clear. Even the simple triangle example requires a somewhat longe
of explanation so we know the meaning ofa, b, andh.

In mathematics, you can append notes when you need to break out of the sea of sym
explain what the symbols stand for. In programming, where code can easily run 10 or more
and where you care a little more what the symbols stand for, variable names should be
meaningful.

As people discovered that they needed longer variable names, computer languages imp
The first BASIC interpreter limited variables to a single letter and an optional digit (A, B2, C3,
etc.)

FORTRAN gave the programmer six characters to play with—really 5 1/2, since the first c
acter denoted the default type. That meant that instead of using I for an index, you could
name likeINDEX. This was progress. (One problem with FORTRAN was that it used the first
ter of the variable name for type information. So people would useKOUNTfor “count” so that the
type would be integer.)

In C the length of a variable name is unlimited (although the first 31 characters mu
unique). So variable names like these:

disk_name total_count last_entry
are legal.

If long is better, then very long must be much better, right? Consider this example:

total_number_of_entries_with_mangled_or_out_of_range_dates

This is an extremely descriptive name; you know exactly what this variable is used for
there are problems with names like this. First, they are difficult to type. Second, rememberin
exact wording of such a long name is not easy. Finally, look at what happens when you try
this variable in a statement:

total_number_of_entries_with_mangled_or_out_of_range_dates =
total_number_of_entries_with_mangled_input +
total_number_of_entries_with_mangled_output +
total_number_of_entries_with_out_of_range_dates;

True, you know what the variables are, but the statement logic is obscured by the exces
bosity of the names.

1
n
--- U f Uk 1

1
n
--- U f∑ 

  1
n
--- U f 1+∑ 

 –+∑

1
n
--- U j

2 1
n
--- U f∑ 

  2
–∑ 

  1
n
--- U f

2
k

1
n
--- U f k+∑ 

  2
–+∑ 

 
lim

n ∞→

--
c03.doc - 26 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

iptive,

s

cially
for each
terms

from
ames.
ning-

ns for

, max)
ker.
Choosing the right variable name is a balancing act. It must be long enough to be descr
yet short enough to be memorable and useful.

Over the years, the following rule of thumb has evolved.

Rule 3-2:

Good variable names are created by using one word or by putting two or three word
together, separated by “_”. For example:

/* Good variable names */
start_time start_date late_fee
current_entry error_count help_menu
AllDone ModemName LastNumberCalled

Capitalization
Shortly after the invention of moveable type, printers began to arrange their letters in spe

designed boxes, or cases. Soon a standard arrangement emerged: two drawers were used
typeface, the top one holding the capital letters, and the bottom for all the others. Thus the
uppercase and lowercase.

In many programming languages case is ignored, but in C, uppercase is distinguished
lowercase. This means, for example, that Count, count and COUNT are three different n
This can lead to problems, but it also gives you another tool for making variable names mea
ful.

Over the years programmers have devised special naming and capitalization conventio
variables, functions, and constants.

One of the advantages of this system is that all the component words (total, count, name
are separated from each other. This allows you to run the program through a spelling chec

System A

total_count Variable and
function names

All lowercase words separated by
underscores

NAME_MAX Constants All uppercase words separated by
underscores

System B

TotalCount Variable and
function names

Upper/Lower case with no separa-
tors.

NAME_MAX Constants All uppercase words separated by
underscores
c03.doc - 27 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ntally,
is not

l pro-

System

sub-

tter

rted
e

adn't
This system uses a different style for variables and functions. Research shows, incide
that people find upper- and lowercase words easier to read than lowercase only. System B
very common.

This system uses a different format for local and global names, which provides additiona
gramming information.

Each system has its own advantages. System A used to be the universal standard, but
C is quickly growing in popularity. Choose the one that suits you best and stay with it.

Names You Must Never Use
A programmer once came up with a brilliant way to avoid ever getting a traffic ticket. He

mitted a request for a personalized license plate with the choices “0O0O0O”, “ 1l1l1l ”, and
“ ll0O11 ”. He figured that if his license plate read “0O0O0O”, the police would find it difficult to
tell the difference between the letter “O” and the digit “O”. The problem was, the DMV clerk had
the same problem, so he got a personalized license plate that read “000000 ”.

The uppercase letter “O” and the digit “O” can easily be confused. So can the lowercase le
“1” and the digit “1”.

Rule 3-3:

Never useI (lowercaseL) or O (uppercaseO) as variable or constant names.

Other Names Not To Use
Don't use names already in the C library. You'll never know who calls them. I recently po

a program that defined its own version ofgetdate. The program worked under UNIX becaus
although the C library has agetdate function, the program never expected to use it.

When the application was ported to the PC, I discovered thatgetdatecalled the library func-
tion time. This function had an internal call togetdate. It expected to call the systemgetdate, not a
local function defined in the program. But the program overrode the library'sgetdate, which
resulted ingetdate calling time callinggetdate calling time—until the stack overflowed.

A quick global rename was done to turngetdateinto get_current_date , and the porting
problem went away. But it would have never occurred in the first place if the programmer h
used an existing C library function:

System C

total_count Local variable and
function names

All lowercase words separated by
underscores

TotalCount Global variables and
functions

Uppercase and lowercase with no
separators.

NAME_MAX Constants All uppercase words separated by
underscores
c03.doc - 28 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

s total
uch as

e

s for
vari-

sing it

s. You

ne
tion,
Rule 3-4:

Don't use the names of existing C library functions or constants.

Avoid Similar Names
Subtle differences in variable names should be avoided. For example, the variable name

and totals can be easily confused. Differences between variables should be blatant, s
entry_total andall_total .

Rule 3-5:

Don't use variable names that differ by only one or two characters. Make every nam
obviously different from every other name.

Consistency in Naming
Consistency and repetition are extremely powerful programming tools. Use similar name

similar functions. In the following example, you can easily guess the name of the missing
able:

int start_hour; /* Hour when the program began */
int start_minute; /* Minute when the program began */
int ??????; /* Second when the program began */

If start_hour is the hour when the program began andstart_minute is the minute,
you can easily figure out the name of the variable that holds the seconds. Think how confu
would be if the programmer had written this:

int start_hour; /* Hour when the program began */
int begin_minute; /* Program start time. minutes only */

/* Seconds on the clock at program commencement */
int commence_seconds;

Rule 3-6:

Use similar names for variables that perform similar functions.

Which Word First
Suppose you have a variable that denotes the maximum entry in a series of number

could call itmax_entry or entry_max . How do you decide which name to use?

Picking one at random is does not work, because you might at one time pickmax_entry for
one program andentry_max for another. Experience shows that too often we forget which o
we picked for a particular program, which results in confusion. More often than I care to men
I've had to do a global search and replace to changemax_entry to entry_max .
c03.doc - 29 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

n this
ch as

sort-

ays

. These

not

the
rule
You need a selection rule. What happens when you put the most important word first (i
case, entry)? A cross reference listing will group all the entry related variables together, su
(entry_count , entry_min , entry_mnax).

If you choose to begin with the wordmax. then all the maximum limits will be grouped
together (max_count , max_entry , max_list).

Sorting by an important relation (all variables related to entries) is more important than
ing by type (all maximums).

Rule 3-7:

When creating a two word variable name where the words can be put in any order, alw
put the more important word first.

Standard Prefixes and Suffixes
Over the years a few standard prefixes and suffixes have developed for variable names

include the following:

_ptr Suffix for pointer

Examples:

int *entry_ptr; /* Pointer to current entry */
char *last_ptr; /* Pointer to last char in str */

_p Another suffix for pointer. This can be a little confusing to people who are
familiar with it, so the suffix_ptr is preferred.

Examples:

event *next_p;/* Pointer to next event in queue */
char *word_p; /* Pointer to start of next word */

_file A variable of type FILE *, or a C++ I/O stream.

Examples:

FILE *in_file; /* Input data file */
FILE *database_file;/*Where we put the database */

_fd File descriptor (returned by the open function.)

Examples:

/* The dictionary file descriptor */
int dictionary_fd;

/* File where we put the memory dump */
int dump_fd;

n_ Number of. For example, if you store a set of events in the array events,
n_events is the number of entries in the events array. Does this violate the
about putting the most important word first? Yes, but it's established usage.

Examples:
c03.doc - 30 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

times
ibrary

nd, it
ction,

ions
into

he

with a

I Com-
cided
/* A list of events */
int events[EVENT_MAX];

/* Number of items in event array */
int n_events = 0;

/* A list of accounts */
struct account account;

/* Number of accounts seen so far */
int n_accounts = 0;

Rule 3-8:

Standard prefixes and suffixes are_ptr , _p , _file , _fd , andn_ .

Module Prefixes
When creating large modules or libraries (more than 10 functions), a prefix is some

added to each variable and function in the library. For example, everything in a database l
might start with the prefixDb.

Example:

int DbErrorNumber;
extern int DbOpen(char *name);
extern int DbClose(int handle);

This serves two purposes: first, it identifies the module containing the name; and seco
limits name conflicts. A symbol table module and a database both might have a lookup fun
but the namesSymLookup andDbLookup do not conflict.

The X Windows system uses this naming convention extensively. All X Windows funct
begin with the letter X. However, the system is so complex that it has been further divided
“tool kits,” each of which has its own prefix. For example, Xt is the Andrew Tool kit, Xv is t
X-view tool kit, etc.

Special Prefixes and Suffixes
Sometimes you need to use special names, names that you can be sure don't conflict

large body of existing code. Such cases call for unusual naming conventions.

For example, the C preprocessor had been around a number of years before the ANS
mittee decided on a standard set of predefined symbols. In order to avoid conflict, they de
that each symbol would look like this: (__SYMBOL__).

Some of the predefined symbols include:
c03.doc - 31 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

pecial

hing

ity of
at the

raphic

cal
s more

 a

s, the
ed

iately
g else.

tion
yi, the
at it

-

_ _LINE_ _ _ _FILE_ _ _ _STDC_ _

Compiler manufacturers have now jumped on this bandwagon and defined their own s
symbols using this convention.

The utilities lex and yacc solve the naming problem in a different way: they begin everyt
with yy . Thus we get names likeyylex , yytext , andyylength in the code generated by
these utilities. It may look a little strange at first, but after a yywhile yyou yyget yyused to it.

If you do need to define a name that's widely used and you want to minimize the possibil
a naming conflict, begin it with an underscore (_). Very few programmers use this character
beginning of normal variable or constant names.

When You Can Use Short Names
In some cases you can use short variable names. For example, when dealing with a g

position, the variablesx andy are descriptive.

Also, the variable named “i ” is frequently used as a general purpose, handy dandy, lo
index. Its popularity makes it acceptable as a variable name, even though the name index i
descriptive.

Rule 3-9:

Short names such asx , y, andi are acceptable when their meaning is clear and when
longer name would not add information or clarity.

argv, argc
The main function of a C program takes two arguments. In 99 percent of the program

arguments are namedargv andargc . In the other 1 percent, we wish the programmer had us
argc andargv instead ofac andav.

A lot of history has gone into these names. When programmers see them, they immed
think “command line arguments.” Don't confuse the issue by using these names for anythin

Rule 3-10:

Useargc for the number of command line arguments andargv for the argument list. Do
not use these names for anything else.

Microsoft Notation
When Microsoft introduced Windows, it also introduced a new variable naming nota

called Hungarian Notation. (There are two reasons why it's called that. First, Charles Simon
man who invented it, is Hungarian. Second, most people looking at it for the first time think th
might as well be written in Hungarian.) It's also known as Microsoft Notation.

The idea is simple: prefix each variable name with a letter denoting its type; for example,w for
a 16-byte integer (word), andl for a 32-byte integer (long). That way, you can easily prevent pro
gramming problems caused by type conflicts. For example:
c03.doc - 32 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

com-

ot the

ame.
. The

an-

like
wValue = lParam; /* Obvious type conflict */

There is no complete list of prefixes. The following was gathered from several sources:

Prefix Type

b Boolean (true or false)

w Word, 16-bit integer

i Integer, 16-bit integer (conflicts withw)

n Short, 16-bit integer (conflicts withw)

n Near pointer (ambiguous, can be used for “short”)

p Pointer

d Double, 32-bit integer

dw Double word, 32-bit integer (conflicts with d)

l Long, 32-bit integer (conflicts withd)

fn Function (or pointer to function)

g Global

s String

sz String terminated with zero (conflicts withs)

c character

by byte (unsigned character)

h Window handle

hn Window handle (conflicts withh)

There are some problems with this notation. First, the list of prefixes is confusing and in
plete, and the order of prefixes is not clear. For example, does a pointer to a word start withpw or
wp?

Second, variables with type prefixes get sorted by type in the cross reference, which is n
most useful ordering.

Of course, sometimes a programmer really needs to put type information into a variable n
For example, it's very important to know the difference between things and pointers to Wings
suffix _ptr does this job well.

Example:

char name[30]: /* Name of the user */
char *name_ptr: /* Pointer to user's name */

Suffixes easily do the job of Microsoft's prefixes without getting in the way. The only adv
tage of Microsoft Notation is that it makes type conflicts obvious. For example:

wValue = lParam: /* Obvious type conflict */

However, most good compilers will produce a warning message for potential problems
this. So while it may be hard to spot the potential problem in the following line:
c03.doc - 33 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

o con-
ace is
n is to
e, T

t it's
t that

round,
count = index:

it's a lot easier when the compiler chimes in with:

Line 86: Warning: Assignment may lose significant digits

Imaginative Solutions
PC class machines come with a line drawing character set that allows the programmer t

struct things like single and double lined boxes. One of the problems PC programmers f
what to name these curious characters when they are referred to in a program. One solutio
begin every single line character with S. followed by the character type: C for corner, L for lin
for T and X for cross, followed by a name. The result is:

Character Name

S_C_UR (Single, Corner, Upper Right)

S_C_UL (Single, Corner, Upper Left)

S_C_LR (Single, Corner, Lower Right)

S_C_LL (Single, Corner, Lower Left)

S_L_A (Single, Line, Across)

S_C_UR (Single, Line Down)

SD_X_DA (Single Down, crossing Double Across)

After a while this system tends to make you sick. The problem with this system is tha
complex and somewhat error prone. At the time it was the best we could come up with, bu
didn't stop us from trying something new.

Then someone figured out a system where you started at the top and worked your way a
counting the number of lines (0, 1, or 2).

0

2

1

2

c03.doc - 34 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ewhat
ring

. Each
rd pro-

ars,

n on
long

is the
So the character turns intoL_0212 . The table is now:

Character Name

L 0011

L_0110

L_1001

L_1100

L_0101

L_1010

L_1212

Now, these names break all the rules we have discussed so far. They are short and som
cryptic. But put them in a file with a very good comment block explaining them, and they b
order to a very messy problem.

Case studies
Over the years different groups have developed their own standard naming conventions

has its own advantages and disadvantages. This section will look at some of the standa
grams and how they use their names.

The C runtime library
The C runtime library traces its roots back to the first C compiler. It evolved over the ye

and the ANSI Committee standardized it.

Naming conventions:

Private variable names All lowercase

Public variable names All lowercase

Constant names Uppercase only

The C library is full of short, cryptic names like these:

creat stdin stdout open
strcpy printf memcmp malloc

Initially names were restricted because of severe limitations in the compiler, which ra
some extremely small machines. Also, the early programmers didn't place any value on
names.

These names are somewhat cryptic. For example, the functionstrcpy copies a string. A
much better name would have beenstring_copy . And usingcreat instead ofcreate is
pretty silly.

The language does not make good use of prefix and suffix letters. For example, here
printf family of functions:

printf Print to standard output

fprintf Print to a file
c03.doc - 35 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

stan-

bers

and
d.

e. It
UNIX.

revi-

the
an
sprintf Print to a string

vfprintf Print to a file, argument list is a vector

Also, the library is fairly consistent. For example, every string functionstr... has a correspond-
ing strn... function.

Example:

strcpy copy a string

strncpy copy n characters of a string

strcat append one string to another

strncat append n characters of one string to another

Constant names are also somewhat cryptic. For example, some of the error codes (from
dard libraryerrno.h) are:

#define EZERO O /* Error O */
#define EINVFNC 1 /* Invalid function number */
#define ENOFILE 2 /* File not found */
#define ENOPATH 3 /* Path not found */
#define ECONTR 7 /* Memory blocks destroyed */
#define EINVMEM 9 /* Invalid memory block address */

However, the C library is good about grouping similar constants together. All error num
begin withE, all open flags begin0_ , and so on.

All in all, the C 1ibrary is fairly well designed; and the naming, though short, is regular
reasonable, with limitations tractable to the days when C compilers were much more limite

The UNIX kernel
The UNIX operating system was one of the very first to be written in a high level languag

was the first to be widely ported. Today, almost every computer that’s not a PC clone runs

Naming Conventions

Private variable names All lowercase

Public variable names All lowercase

Constant names Uppercase only

UNIX is the king of the 1 to 3 character variable names. Some typical names are:

u bp i bn
pid uid gid fd

After a while, UNIX operating system programmers learn the meaning of most of the abb
ations. The know thatpid stands for processid andbp is a buffer pointer. But it takes time and
effort to learn this code. In fact, UNIX internal programming is not for the inexperience or
faint of hear.t Most programmers must be introduced into the world of UNIX internals by
experience guru.
c03.doc - 36 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

stem
h as:

nt. It
proces-

put

ll at

tants
ted

ead.
s

UNIX

nd

like
As UNIX evolved, more and more people added to its code. While the core of the sy
remains cryptic, much of the new code is better. Longer variable names came into use, suc

physical_io dispatch
signal tty_select

The Microsoft library
Microsoft Windows provides PC programmers with a graphics programming environme

also allows programmers to better use the power of the more advanced 80386 and 80486
sors.

Naming conventions:

Private variable names Up to the application programmer

Public variable names Upper and lowercase

Constant names Uppercase only

Function names in Microsoft Windows are nicely done, consisting of several words
together. Examples:

GetFreeSpace UnlockSegment CreateBitmap
CloseClipboard GetWindow AppendMenu

However, there is no special prefix or suffix for Windows functions, so it's impossible to te
a glance whether or notOpenFile is a Windows function. Constants are all Uppercase.

Examples:

LB_SETSEL WM_MOUSE WM_MOVE
WM_CLOSE EN_UPDATE LB_MSGMAX

Each constant contains a short group prefix. For example, all “List box” related cons
begin withLB_. Almost all Windows constants contain only one “_”, which is used to separa
the prefix from the rest of the constant. Multiple words are run together, making it difficult to r
Therefore a constant likeWM_WINDOWPOSCHANGEDwould be much more readable if it wa
written asWM_WINDOW_POS_CHANGED.

In general, the Windows naming convention makes programs more readable than the
code or C library. Although not perfect, it is a step forward.

The X Windows System
The X Windows is a popular UNIX windowing system available from MIT. Its low cost a

relative availability make it the windowing system of choice for most UNIX systems.

Naming conventions:

Private variable names Up to the application programmer

Public variable names Uppercase and lowercase

Constant names Most Uppercase only, some upper and lowercase

One of the most refreshing things about X Windows programming is that it actually looks
someone thought about the design and style of the system before beginning the coding.
c03.doc - 37 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

th no

rent
l kit

with

efore
rfaces

in. But
hnical
grams.

ork.

look

inch
meone
Public function and variable names in X Windows are upper and lowercase words, wi
underscores.

Examples:

XDrawString XNextEvent XGrabPointer
XCreateGC XMapWindow XFlush

All public names start with the letter X. The programmer can select among many diffe
tool kits for code. Each of these has its own prefix. For example, all routines in the X-View too
start with Xv.

Constants begin with a type prefix. For example, all button related constants begin
BUTTON_. Constants are a series of words separated by underscores.

XA_POINT XA_BITMAP XA_ATOM
XrmOptionNoArg XSetSizeHints Focusin

The X Windows system shows what can happen when some thought is given to style b
coding begins. It is well designed and presents the programmer with one of the best inte
available.

Variable Declaration Comments
Choosing good variable names helps create programs that are easy to read and mainta

names can't do the job alone. The programmer needs a definition for each variable. Tec
books have glossaries that explain all the special terms. We also need a glossary for our pro

Writing a glossary is a lot of work. Maintaining it and keeping it up to date is even more w
A better solution is to follow each variable with a comment that describes it.

Examples:

int window; /* Current window index */
int words; /* Number of words in the document */
int line_number; /* Current input file line number */
char *in_name; /* Current input file name */

Now, if you want to know the definition of line_number, go to your cross reference and
for the first reference to the variable, thus locating the line:

int line_number; /* Current input file line number */

Using this method, you can quickly determine the type and definition of any variable.

Rule 3-11:

Follow every variable declaration with a comment that defines it.

Units
Weather services generally measure rainfall in hundredths of inches, referring to half an

of rain as 50. However, one night the weather service computer used inches as input. So
forgot a decimal point and entered 50 instead of 0.50.
c03.doc - 38 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

es-

n two
ears. It

ghout
g out
pro-

kage.
scrip-
Now, 50 inches of rain is a lot of rain. The computer caught the effort and printer this m
sage:

Build an Ark. Gather the animals two by two.

Units of measure are important. It's one thing to describe dist as the distance betwee
objects, but what are the units? They could be inches, centimeters, yards, meters, or light y
makes a difference.

Rule 3-12:

Whenever possible, include the units of measure in the description of a variable.

Examples:

int distance-left; /* Distance we've got left (in miles) */
int owed; /* Amount owed in current account (in cents) */

/* Acceleration of gravity (in furlongs/fortnight**2) */
float gravity;

I once had to write a graphics conversion program. Many different units were used throu
the system, including inches, thousandths of an inch, plotter units, digitizer units, etc. Figurin
which units to use was a nightmare. Finally, I gave up and put the following comment in the
gram:

/**
* Warning: This program uses a lot of different types *
* of units. I have no idea what the input units *
* or nor do I have any idea what the output *
* units should be, but I do know that if you *
* divide by 3 the plots look about the right size.*
**/

Structures and unions
A structure is simply a group of related variables tied together to form a convenient pac

Each field in a structure should be treated like a variable, with a carefully chosen name. A de
tive comment is necessary as well.

Example:
c03.doc - 39 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ses a
hite

ch like

fol-

te line

asy
so
/*
* A square of space on the screen enclosed by
* a border
*/

struct box {
int x; /* X loc. of upper left corner (in pixels) */
int y; /* Y loc. of upper left corner (in pixels) */
int length; /* Length of the box in pixels */
int width; /* Width of the box in pixels */

};

The structure itself is described in a comment just before its definition. This example u
multi-line comment to describe the box. Single-line comments tend to get lost in the clutter. W
space before and after the definition separates the structure from the rest of the code (mu
blank lines separate paragraphs in this book).

Rule 3-13:

Name and comment each field in a structure or union like a variable.

Rule 3-14:

Begin each structure or union definition with a multi-line comment describing it.

Rule 3-15:

Put at least one blank line before and after a structure or union definition.

Long declarations and comments
Sometimes a variable declaration and its initializer leave little room for a comment. In the

lowing example, we need to describelast_entry,but where do we put the comment?

int first_entry; /* First entry to process */
int last_entry = (GOOD-ENTRIES + BAD-ENTRIES + FUDGE);
int current_entry; /* Entry we are working on */

There's no room at the end of the line. The solution is to put the description on a separa
in front of the variable:

int first_entry; /* First entry to process */
/* Last entry number to process */
int last_entry = (GOOD-ENTRIES + BAD-ENTRIES + FUDGE);
int current_entry; /* Entry we are working on */

But this is still not good enough. This section of code looks like a big gray blob. It's not e
to locate the description forlast_entry.Adding white space not only breaks up the blob, it al
helps grouplast_entry'scomment and declaration as shown here:
c03.doc - 40 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

on a
the

roup

he

utput

s this:

oup.
int first_entry; /* First entry to process */

/* Last entry number to process */
int last_entry = (GOOD-ENTRIES + BAD-ENTRIES + FUDGE);

int current_entry; /* Entry we are working on */

Rule 3-16:

When you can't put a descriptive comment at the end of a variable declaration, put it
separate line above. Use blank lines to separate the declaration/comment pair from
rest of the code.

Group similar declarations
Repetition and consistency are powerful organizing tools. When declaring variables, g

similar variables together and use similar names.

int errors_out; /* Total number of output errors */
int errors_in; /* Total number of input errors */

int max_out; /* Max output error rate (errors/hour) */
int max_in; /* Max input error rate (errors/hour) */

int min_out; /* Min output error rate (errors/hour) */
int min_in; /* Min input error rate (errors/hour) */

This example uses the prefixerrors_ for the counters that accumulate a running total of t
input/output errors. The variables that hold the limits start with the fixesmax_ andmin_. Common
suffixes are also used. All output-related variables end with _out,and input variables with_in.

Notice that each group of variables consists of two declarations, the first one for the o
and the second one for the input.

This example shows only one of several possible groupings. Another possible method i

int errors_out; /* Total number of output errors */
int errors_in; /* Total number of input errors */

int max_out; /* Max output error rate (errors/hour) */
int max_in; /* Max input error rate (errors/hour) */

int min_out; /* Min output error rate (errors/hour) */
int min_in; /* Min input error rate (errors/hour) */

Rule 3-17:

Group similar variables together. When possible, use the same structure for each gr
c03.doc - 41 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

clared

glo-
g

e name

these
D
?

Hidden Variables
Hidden variables occur when a variable is declared in a global scope and is then de

again in a local scope. The second declaration “hides” the first.

In the following example, the second declaration of location hides the first.

/* Bad programming practice */

/* Distance traveled by the car in miles */
float location;

/*..... */
void display_location(void)
{

/* Location of current cursor */
int location; /* *** Hides previous declaration *** */

The problem is that we've now used the same word for two different things. Is location a
bal or a local? Is it afloat or an int? Without knowing which version of the variable is bein
referred to, we can't answer these questions.

There are enough variable names in the universe that there's no reason to use the sam
twice. We could just as easily have used a different name for the second declaration:

/* Good programming practice

/* Distance traveled by the car in miles
float car_location;

/*..... */

void display_location(void)
{

/* Location of current cursor */
int cursor_location;

Rule 3-18:

Don't use hidden variables.

Portable Types
The C compiler runs on many different machines. Making portable programs that can run on all

machines is an art. One trick used to define portable types. For example, Novell uses the type WORand
DWORDin all its header files. Butwhat is aWORD?Is it 8, 16, or 32 bits? Is it signed or unsigned
You can't tell from the name.
c03.doc - 42 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

num-

t.

n be
The

tand
A better set of portable names is:

INT16 INT32
UINT16 UINT32

These names clearly define the type and size of the data.

Rule 3-19:

Use the names INT16, INT32, UINT16, and UINT32 for portable application

Numbers
C uses a wide variety of numbers, and it's easy to get them confused. Be careful to make

bers clear and unambiguous.

Floating-point numbers
Here are some examples of floating-point numbers:

0.5 .3 6.2 10.
32E4 1e+10 0.333331 5E-5

A zero in front of the decimal point is optional. For example, C treats0.8 and.8 same. But
there is a difference..8 looks a lot like the integer8, while the number0.8 is obviously floating-
point. Similarly, you should write numbers like5. as5.0 .

Rule 3-20:

Floating-point numbers must have at least one digit on either side f the decimal poin

Large floating-point numbers are written using exponent format. The exponent's “E” ca
written in upper or lowercase. Which is better? Well, all digits are full-height characters.
uppercase E is also a full-height character and can easily get lost in a string of digits.

32141831235432lEl32809932

The E is important and shouldn't get lost. The lowercase is easier to spot:

32141831235432lel32809932

It's even easier if you always include the sign.

321418312354321e+132809932

So a lowercasee and a sign make these important elements of a floating-point number s
out.

Rule 3-21:

The exponent in a floating-point number must be a lowercasee. This is always followed by
a sign.

Here are some examples of good floating-point numbers:
c03.doc - 43 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ay be
sed

matic.

But
o

3.1415 3.0 0.5 0.0
1.0e+33 1.0e-333. 33.0 1230.0

Hex numbers
C uses the prefix Ox for hexadecimal numbers. A uppercase or lowercasex may be used, but

as discussed, lowercase letters stand out better.

Rule 3-22:

Start hexadecimal numbers withOx. (Lowercasex only.)

Hexadecimal digits include the letters A through F. Again, uppercase or lowercase m
used, soOXACEis the same asOXace. Lowercase digits create numbers that are easily confu
with variable names. Uppercase digits create numbers that look like constants.

0xacde ace face 0Xdead
0xACE X_ACE BEEF 0xBEEF

Numbers are a type of constant, so confusing a number and a constant is not too proble
Mistaking a number for a variable is worse, so it is preferable to use uppercase digits.

Rule 3-23:

Use uppercase A through F when constructing hexadecimal constants.

Long integers
Long integers end with the letterL. Again, C is case insensitive, so lowercase can be used.

lowercasel looks a lot like the number1 and should be avoided. For example, the following tw
constants look very much alike:

34l 341

But when the long integer is written using an uppercaseL, the confusion clears up:

34L 34l

Rule 3-24:

Long constants should end with an uppercaseL.
c03.doc - 44 - Modified: January 9, 1999 12:07 am

C Elements of Style Draft Version 0.8 by Steve Oualline
c03.doc - 45 - Modified: January 9, 1999 12:07 am

	Chapter 3: Variable Names
	A Brief History of the Variable
	Capitalization
	Names You Must Never Use
	Other Names Not To Use
	Avoid Similar Names
	Consistency in Naming
	Which Word First
	Standard Prefixes and Suffixes
	Module Prefixes
	Special Prefixes and Suffixes
	When You Can Use Short Names
	argv, argc
	Microsoft Notation
	Imaginative Solutions
	Case studies
	The C runtime library
	The UNIX kernel
	The Microsoft library
	The X Windows System

	Variable Declaration Comments
	Units
	Structures and unions
	Long declarations and comments
	Group similar declarations

	Hidden Variables
	Portable Types
	Numbers
	Floating-point numbers
	Hex numbers
	Long integers

