Chapter - 7
The
Programming
Process

Copyright 2003 O'Reilly and Associates ~ Pagel

The Programming Process

11g needs
fixing ##
Actually

needs
rewriting for

this format
H#

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Page2

Setting Up

In general you want to put each program in a separate
directory. To create a directory use the commands:

UNIX:
% cd ~
% nkdir calc
% cd cal c

Microsoft Windows (Command Prompt window):
C>cd \
C.> nkdir calc
C.> cd calc

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page3
g g pyrig y

Specification

Calc
A four—-function calculator
Preliminary Specification
Dec. 10, 2002 Steve Oualline

Warning: This 1is a preliminary specification. Any
resemblance to any software 1living or dead 1s purely
coilncidental.

Calc is a program that allows the user to turn his $10,000
computer into a $1.98 four-function calculator. The program
adds, subtracts, multiplies and divides simple integers.

When the program 1s run, 1t zeros the result register and
displays 1ts content. The user can then type 1n an operator
and number. The result 1s updated and displayed. The
following operators are valid:

Operator Meaning

+ Addition

- Subtraction

x Multiplication
/ Division

Practical C++ Programming Copyright 2003 O'Reilly and Associates Paged

Sample Use

cal c

Result: O

Enter operator and nunber: + 123
Result: 123

Ent er operator and nunber: - 23
Resul t: 100

Enter operator and nunber: / 25
Result: 4

Ent er operator and nunber: * 4
Result: 16

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Code Design

Code design 1s the process of writing down a
description of our program in a clear and easy to
understand manner. Details may be omitted.

Frequently pseudo code 1s used for this purpose:

Loop

Read an operator and nunber
D0 the cal cul at1 on

Dl splay the result

End- Loop

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

The Prototype

The prototype code contains a small sub-set of the
full program. It Is the smallest sub-set that does
anything. This allows us to test it before we write
the full program.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Y LAt =y ¥ L V- < & o L o L AL =

Prototype

}

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page8
g g pyrig y

The Makefile

The program make acts as the programmers
assistant. When you type the command make the
program looks for the file Makefile, reads a
description of how to create the program and
executes the necessary commands.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page9
g g pyrig y

e I o I B - -/

Makefile for UNIX generic
CC compiler

i
CC=CC
CFLAGS=—g

clean:

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

A A T = S e A o S - D S - S - B -

Makefile for the GNU g++
compiler

CC=g++

clean:

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagell

Makefile for Borland-C++

Makefile for Borland's Borland-C++ compiler
#

CC=bcc32

#

Flags

-N —— Check for stack overflow
i -v —— Enable debugging

-w —— Turn on all warnings

¥ —tWC —- Console application

i

CFLAGS=-N —-v —-w —tWC
all: calc.exe

calc.exe: calc.cpp
$(CC) $(CFLAGS) -—-ecalc calc.cpp

clean:

erase calc.exe
Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel2

Makefile for Visual-C++ .NET

#

Makefile for Microsoft Visual C++

#

CC=cl

Flags

GZ - Enable stack checking

i RTCsuc —- Enable all runtime checks
i 71 —— Enable debugging

Wall ——- Turn on warnings (Omitted)
it EHsc —— Turn exceptions on

CFLAGS=/GZ /RTCsuc /Zi /EHsc
all: calc.exe

calc.exe: calc.cpp
$(CC) S$S(CFLAGS) <calc.cpp

clean:
erase calc.exe

Practicalw-alrl‘](:jgjtggling’rhe Visual C+tomgl1§ g)(}ﬁ,l QL%EX aiﬁ% A}%%gd nmake * Pagel3

Testing

Once the program 1s compiled without errors, we
can move on to the testing phase. Now is the time to
start writing a test plan. This document 1s simply a
list of the steps we perform to make sure the
program works. It 1s written for two reasons.

e [f a bug is found, we want to be able to reproduce
it.

 If we ever change the program, we will want to
re-test 1t to make sure new code did not break any of
the sections of the program that were previously
working.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

Test Plan

Try the foll owm ng operations

+ 123 Result should be 123

+ B2 Result should be 175
X 37 Error nessage shoul d be out put
Running the program we get:

Result: O
Ent er operator and nunber: + 123
Result: 123
Ent er operator and nunber: + 52
Result: 175
Ent er operator and nunber: x 37

Result: 212

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Pagel5
g g pyrig y

Debugging

One of the simplest ways of d ebugging 1s to put p rint statements in your
program. We’ll put one before the data goes bad (just to make sure 1t’s good)
and one after, to see what went wrong.

std::cout << "Enter operator and nunber: ";
std::cin >> val ue >> operator,

std::cout << "## after cin " <<operator << '\n';

I f (operator = "+") {
std::cout << "## after If " << operator << '\n';
result += val ue;

Note: The ## is used to indicate that this is a debug line. It also makes it easier
to remove all debugging statements when wet e done.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel6

Debug Output

Result: O
Enter operator and nunber: + 123
Result: 123

Ent er operator and nunber: + 52
after cin +

after I f +

Result: 175

Enter operator and nunber: x 37
after cin X

after I f +

Result: 212

You should now be able to spot the problem.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel7

Y ou were war ned!

Remember when we were discussing = vs. = =.

I told you then that this 1s a very common error and
you will make 1t. The reason we go on and on about
it here 1s so that you will be aware of 1t and able to
fix 1t when 1t does occur.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel8

main ()

Practical C++ Programming

Inished Program

break;

Copyright 2003 O'Reilly and Associates

Pagel9

s 1L 0 0 Ve TNee— Ny L -y]

Finished Program (cont.)

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Finished Test Plan

We expand our test plan to include the new operators and try it again.

+ 123 Result should be 123

+ 52 Result should be 175

X 37 Error nmessage shoul d be out put
- 175 Result should be zero

+ 10 Result should be 10

/[5 Result should be 2

/[O D vide by zero error

* 8 Result shoul d be 16

q Program shoul d exit

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page21

M aintenance and
Revisions

No matter how much testing 1s done on a program the user
can always find at least one more bug. During the
maintenance phase, these bugs are found and removed.

Revisions

No matter how complete a program, the user will want one
more feature. So you revise the specifications, add the
change to the program, update the test plan, test the
program and release it again.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page22

Electronic Archeology

The art of going through someone else’s code to
discover amazing things
(like how and why the code works).

Contrary to popular belief, most C++ programs are
not written by dyslexic orangutans using Zen
programming techniques, and poorly commented in
Swahili. They just look that way.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page23

Odeto a maintenance
programmer

Once more I travel that lone dark road
into someone else’s impossible code
Through “i1f”” and “switch” and “do” and “while”
that twist and turn for mile and mile
Clever code full of traps and tricks
and you must discover how it ticks
And then I emerge to ask a new,
“What the heck does this program do?”

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page24

Ar chaeological tools

Editor (browser)
Cross referencer
grep

indention tools
pretty printers
call graphs
debuggers

ractical C++ Programming Copyright 2003 O'Reilly and Associates

Page25

Techniques

Mark up the program (several colored pens are useful)
Go through and comment the code

Change the short variables to long ones

Add comments

Int state;// Controls sone sort of state machine
Int rnxy; // Sonmething to do wwth color correction?
Int 1dn; [7?7?27

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page26
g g pyrig y

-y JrN oy LJ - L v ¥y ¥y Jrv - v 7 o r =4 4 F 7

A far Too Typical Program

int main () {

++c;

Practical k++ Programming Copyright 2003 O'Reilly and Associates Page27

A Better Version

/**

**/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page28

S LoJ I ==— P - IR B B e e R A

A Better Version (cont.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page29

A Better Version (cont.)

int main ()

{
/%
*/

++guess_count;
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page30

D Ae—m—_— L =~ L L AL L my— N e——)

A Better Version (cont.)

break;

else

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page31

