Chapter — 27

Putting 1t all
together

Copyright 2003 O'Reilly and Associates ~ Pagel

Regquirements

*The program must be long enough to demonstrate
modular programming

*Short enough the fit into a chapter

*Complex enough to demonstrate advanced C++
features

*Simple enough for a student to understand

[t must be useful.

The program selected 1s designed to read C++ files
and generate simple statistics.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2
g g

Specification

Preliminary Specification for a C++ Statistics Gathering
Program

Steve Oualline
February 10, 1995

The program stat gathers statistics about C++ source files and
prints them. The command line is:

stat <files..>
Where <files..> 1s a list of source files. The following shows
the output of the program on a short test file.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3
g g

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Token Module

Code Design

Turns input into tokens (a series of “words™)

Example:
answer

becomes:

T_ID
T_OPERATOR
T_L_PAREN
T_NUMBER
T_OPERATOR
T_NUMBER
T_R _PAREN
T_OPERATOR
T_NUMBER
T_OPERATOR
T_COMMENT
T_NEW_LINE

Practical C++ Programming

(123 + 456) / 89; // Compute something

The word "answer"
The character "="
Left Parenthesis

The number 123

The character "+"
The number 456

The right parenthesis
The Divide operator
The number 89

The semicolon

The // comment

The end of line character

Copyright 2003 O'Reilly and Associates

Page5

Other Modules

Character type module
Determines the type of a character (letter, digit, etc.)
Statistics class

Consumes tokens and outputs statistics.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Functional Description

char_type class.
Basically a big table indexed by character type.

Some extra code thrown 1n for specials like
C _ALPHA NUMRI C.
input_file
An | f st r eamwith line buffering that copies each
line to the output.
token class
Reads characters, outputs tokens.

There 1s one trick in the coding, the use of the
TOKEN LI ST macro.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

TOKEN_ LIST

#define TOKEN LIST \

T(T _NUMBER), /* Simple number (float or int) */ \

T(T_STRING), /* String or character constant */ \
T(T_COMMENT), /* Comment */ \
T(T_NEWLINE), /* Newline character */ \
T(T_OPERATOR), /* Arithmetic operator */ \
T(T_ I _PAREN), /* Character " (" */ \
T(T_R_PAREN), /* Character ")" */ \
T(T_IL_ CURLY), /* Character "{" */ \
T(T_R_CURLY), /* Character "}" */ \
T(T_ID), /* Identifier */ \
T (T_EOF) /* End of File */

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page8

— ST o —

Functional description
(cont.)

stat class

public:

s

line counter class

Counts the number of T _NEW LI NE tokens.

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page9

race counter class

++cur_level;

break;

——cur_level;

break;
default:

break;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

brace counter class (cont.)

Practical C++ Programming

std:
std::

std:
std:

:cout

cout

:cout.
:cout

.setf (i1os::1left);
.width (2);

unsetf (1os::1left);
.width () ;

Copyright 2003 O'Reilly and Associates

Pagell

Functional Description

paren _counter class

Almost the same as brace counter.

comment counter class

Keeps track of lines with comments, lines of code,
lines with both comment and code and blank lines.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel2

do_file procedure

Reads tokens and stuffs them into the statistics classes.

Uses the statistics list for stuffing:

&line_ count,
&paren_count,
&brace_count,
&comment__count,
NULL

s

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel3

Test file

/**

**/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

The Program

A tour of the
source

Copyright 2003 O'Reilly and Associates

