
C Elements of Style Draft Version 0.8 by Steve Oualline

. The
here
slid it

They
ds into
lacing

d plug
code

a file,
the

ined
umns.
nly 80

long,

t the
ram
imit,
Chapter 2: File Basics, Comments, and Pro-
gram Headings

To program some of the very early computers, programmers had to rewire the machine
programers got a large circuit board called a plug board, which was filled with little holes w
they plugged in wires to create the program. Once they had programmed the board, they
into the computer and ran the program.

Computers soon evolved to the point where programmers could program them in text.
typed their program on a machine that output punched cards, dropped the thick deck of car
the card reader, and the computer did the rest. Editing the program was as simple as rep
cards, but woe be to the programmer who dropped the program and scattered the cards.

Today we use text editors, which are certainly an improvement over punched cards an
boards, but they do have their limitations. Knowing these limitations can help you to write
that will always be readable.

File Basics
C can accept files of almost any size, but there are some practical limitations. The longer

the more time and effort it takes to edit and print it. Most editors tend to get a bit slow when
file size gets to be more than about 3,000 lines. Keep yours within this limit.

Rule 2-1:

Keep programs files to no longer than about 2,000 to 3,000 lines.

Not only are there length limitations, but width limits as well. The old punch cards conta
80 columns. Because of that, most terminals and printers at the time were limited to 80 col
This limitation has carried over to present-day computers. For example, the PC screen is o
columns wide.

Long lines can be a problem in programming. Many printers truncate lines that are too
resulting in listings that look like this:

The code that fell off the right side is referred to as mystery code. So you need to limi
width of your program files to 80 characters. Actually, you need a slightly smaller limit. Prog
printers such ascpr print line numbered listings. Line numbers take up space, so a better l
and one with enough history to be taken seriously, is 72 characters.

Rule 2-2:

Keep all lines in your program files down to 72 characters or fewer.

result = draw_line(last_x, last_y, next_x, next_y, line_style, end_style,
c02.doc - 11 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ked it
size
nder

en-
you
eone
de is
of 8.

le to
e first

II set.
to use

out?
t looks

will
Early terminals had fixed tabs. Every eight characters you had a tab stop whether you li
or not. You couldn't change them since they were built into the machine. This fixed tab
became an industry standard that is still in force today. If you type a file containing tabs u
UNIX or DOS, the tabs come out every eight characters.

Many editors allow you to set your own tab stops. If you are programming in C with an ind
tion size of 4, it is convenient to set the tab stop in your editor to 4. That way, to indent all
have to do is hit the Tab key. The problem with is that your tab setting is non-standard. If som
else edits your program, they won't know about your tabs and will assume that your co
indented strangely. Also, many printing programs and older programs default to a tab size
Some, like DOS, can't be changed.

Note that tab size and indentation level are two different things. It is perfectly acceptab
use a tab size of 8 and an indentation level of 4. You would then use four spaces to reach th
level of indentation, a tab to reach the second, and so on.

Rule 2-3:

Use 8-character tab stops.

Finally, there is the character set. There are 95 printing characters in the standard ASC
The PC extended this set to include foreign characters and a line drawing set. It is possible
the PC character set to draw interesting shapes,

like the following example:

/***
 * Boxes look like *
 * *
 * *
 * *
 * *

***/

This makes for a nice picture on the screen, but what happens when you try to print it
Most printers don't understand the PC character set, so you can easily get something tha
like this:

/***
 * Boxes look like *
 * LQQL *
 * M M *
 * M M *
 * LQQL *

***/

Worse, if this program is ported to another machine, such as a UNIX system, no one
understand the funny characters.
c02.doc - 12 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

s.

rm of
nts, a
figure

tails,
t ones

.

an be

d font
for the

ears
Rule 2-4:

Use only the 95 standard ASCII characters in your programs. Avoid exotic character
(Foreign characters may be used if you are writing comments in a foreign language.)

The Comment
Well-written code can help a programmer understand what is going on, but the best fo

communication is the comment. Comments are used to explain everything. Without comme
programmer has to go through the long and painful process of decrypting the program to
out what the heck it does.

The comment can convey a variety of information, including program design, coding de
tricks, traps, and sometimes even jokes. There are many types of comments, from importan
that you want make sure the programmer doesn't miss to explanations of the tiniest details

The author of a book has the advantage of typesetting devices. Important information c
set inBIG BOLD LETTERS, or words can beemphasizedwith italics.

The programmer, on the other hand, is limited to a single size, single face, monospace
and personal imagination. Over the years a lot of imagination has been used to make up
limitations of the medium.

Rule 2-5:

Include a heading comment at the beginning of each file that explains the file.

The following program illustrates a variety of commenting styles collected over the y
from many different sources.
c02.doc - 13 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline
/**
* This is a boxed comment. the box draws attention *
* to it. This type of comment is used for programs, *
* module and function headings. *
**/

/* >>>>>>>>>>>>>>> Major Section Marker <<<<<<<<<<<<<<< */

/* --------------- Minor Section Marker --------------- */

static int count = 0; /* A simple end of line comment */

/* This was an end of line comment that grew too long */
static int total = 0;

/**
**
********** Warning: This is a very important **********
********** message. If the programmer misses **********
********** it, the program might crash and **********
********** burn. (Gets your attention, **********
********** doesn't it?) **********
**
**/

int main(void)
{

/* This is an in-line comment */

++total;

/*
* This is a longer in-line comment.
* Because it is so verbose it is split into two lines.
*/

return (0);
}

Other types of comments include:
c02.doc - 14 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

owing
ments

a rec-
g the
/*--------------------*\
* Another box style *

--------------------/

/*
* *================*
* * Section Header *
* *================*
*
* This is a sentence with **one** word emphasized.
*/

Graphics
Computers are becoming more and more graphically oriented. Screen layouts, wind

systems, and games all require sophisticated graphics. It's not possible to put graphic com
into a program yet, but you can make a good attempt by using ASCII line art.

A typical screen layout comment might look like this:

/**
* Format of address menu *
* *
* <----- MENU_WIDTH ------> MENU_HEIGHT *
* +-----------------------+ ^ *
* | Name: _______________ | <-- NAME_LINE | *
* | Address: ____________ | <-- ADDRESS_LINE | *
* | City: _______________ | <-- CITY_LINE | *
* | State: __ Zip: ______ | <-- STATE_LINE | *
* +-----------------------+ v *
* ^ ^ *
* | | *
* | +--- ZIP_X *
* +--- BLANK_X *
**/

Even with the crude drawing tools in the 95 standard ASCII characters, you can produce
ognizable picture. This type of comment actually conveys graphically the relationships amon
constants shown.
c02.doc - 15 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ions
ains a

mmers
cifica-
Packing bits
If you do 1/0 programming, you know that hardware designers like to pack a lot of funct

into a single byte. For example, the serial 1/0 chip that controls the COM ports on a PC cont
variety of packed registers.

Parity:
000 - No parity
001 - Odd Parity / No Check
010 - Even Parity / No Check
011 - High Bit always set
100 - Odd Party / Check Incoming characters
101 - Even Parity / Check Incoming characters
110 - Undefined
111 - Parity Clear

Stop Bits:

00 - 1 Stop Bit
01 - 1.5 Stop Bits
10 - 2 Stop Bits
11 - Undefined

These registers are documented in the chip's data sheet. Unfortunately, most progra
don't carry around a complete set of data sheets, so it is very useful to copy the register spe
tion into the

This can be turned into a nice comment and a few defines. (How to write the#definestate-
ments is discussed in Chapter 6.)

Mode Break Parity Stop Stop Bits
c02.doc - 16 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

boxed
/**
* Line Control Register *
* for the PC's COM ports *
* *
* 76543210 *
* XXXXXXXX *
* ^^^^^^++---- Number of stop bits *
* |||||+------ Enable Transmitter *
* ||+++------- Parity Generation *
* |+---------- Send Break *
* +----------- Mode control *
**/

/*
* Define the number of stop bits
*/

#define STOP_1_BIT (0 << 0)
#define STOP_15_BIT (1 << 0)
#define STOP_2_BIT (2 << 0)

#define TRANSMIT_ENABLE (1 << 2)
/*

* Parity Mode
*/

#define PARITY_NONE (0 << 3)
#define PARITY_ODD (1 << 3)
#define PARITY_EVEN (2 << 3)
#define PARITY_HIGH (3 << 3)
#define PARITY_ODD_CHECK (4 << 3)
#define PARITY_EVEN_CHECK (5 << 3)
#define PARITY_CLEAR (7 << 3)

#define BREAK (1 << 6)

#define MODE_ASYNC (0 << 7)
#define MODE_SYNC (1 << 7)

Letting the Editor Help You
Most editors have a macro of abbreviation features that make it quick and easy to create

comments.
c02.doc - 17 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

em in

m are

ogram

iden-
ding

only

lso,
ou to

y, this
you

or pit-
pile
the
If you use the UNIX editor vi, you can put the following in your. exrcfile to define two abbre-
viations:

:ab #b /**
:ab #e **/

When you type#b , the editor changes it to a beginning box, while typing#e creates an end-
ing comment.

On the PC, there is Borland's C++ compiler, which comes with a macro file namedCMAC-
ROS.TEM.These macros must be installed using theTEMCcommand. Type:

TEMC cmacros.tem tcconfig.tc

These macros are a bit limited, however, and you might want to edit them before using th
production.

Beginning Comment Block
The first two questions a programmer should ask when confronting a strange progra

“What is it?” and “What does it do?” Heading comments should answer both questions.

The top of a program serves as a sort of title page and abstract. It briefly describes the pr
and provides vital information about it.

Here, the heading comments are boxed. This not only makes them stand out, but it easily
tifies them as containing important and generally useful information. The first line of the hea
block contains the name of the program and a short description of what it does.

The sections of a heading
The following is a list of heading sections, but not all sections apply to all programs. Use

those that are useful to your program.

• Purpose

Why was this program written? What does it do?

• Author

it took you a great deal of time and trouble to create this program. Sign your work. A
when someone else has to modify this program, they can come to you and ask y
explain what you did.

• Copyright or License

Most commercial programs are protected by copyright or trade secret laws. Generall
is some boilerplate text devised by lawyers. You don't have to understand it, but
should put it in.

• Warning

Sometimes a programmer discovers the hard way that his program contains traps
falls. This section should warn about potential problems. For example: “Don't com
with stack checking on. This is a clever program, and it does strange things with
stack.”
c02.doc - 18 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

nt of
e the
he 1

is to
h for

m is
cking

her
due.
llow

sec-

This
y did,

ve.
• Usage

Briefly explain how to use the program. Oualline's law of documental states: 90 perce
the time, the documentation is lost. Of the remaining 10 percent, 9 percent of the tim
documentation is for a different version of the software and is completely useless. T
percent of the time you have the correct documentation, it is written in Chinese.

A simple way to prevent the program and the documentation from being separated
put the documentation in the program. You don't need a complete tutorial, just enoug
a quick reference.

• Restrictions

This section lists any restrictions that the program might have, such as “This progra
designed to process the output of PLOT5 program. It does not do extensive error che
and may behave strangely if given bad input.”

• Algorithms

If this program uses any special techniques or algorithms, list them here.

• References

Often a programmer will find it useful to copy or adapt an algorithm from a book or ot
source (as long as copyright laws are not violated). But give credit where credit is
Listing the source of any special algorithms in this section gives the people who fo
you a chance to check the original work.

• File Formats

This section briefly describes the format of any data files used by the program. This
tion may also be duplicated in the module that reads or writes the file.

• Revision History

it's not unusual for a number of people to work on a single program over the years.
section lists those who worked on the program, gives a short description of what the
and tells when the work was done. Revision control software such asRCSandSCCSwill
automatically generate this information.

• Notes

This is a catch-all for any other information you may want future programmers to ha
c02.doc - 19 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline
/**
* Analyze -- analyze the complexity of a program *
* *
* Purpose: *
* This program produces a set of statistics that *
* are supposed to tell you how complex a program *
* is. *
* *
* Author: John Jones. *
* *
* Copyright 1999 by John Jones. *
* *
* Warning: Compiling with optimization causes *
* incorrect code to be generated. *
* *
* Restrictions: Works only on error-free C files. *
* Does not know about pre-processor directives. *
* *
* Algorithms: Uses a classic unbalanced binary tree *
* for a symbol table. *
* *
* References: "Software complexity measurements", *
* Flying Fingers Newsletter, May 5, 1995. *
* *
* Output file format for raw data file: *
* <magic number> (AC_DATA_MAGIC) *
* <# statistics that follow> *
* <stat table index> *
* <value> *
* (Repeat for each stat.) *
* *
* Revision history: *
* 1.0 July 5, 1995 Ralph Smith *
* Initial Version. *
* *
* 1.5 Nov 5, 1995 Bill Green *
* Add comment / code ratio *
* *
* 2.0 Jan 8, 1996 Bill Green *
* Extensive rework of the report gen. *
* *
c02.doc - 20 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

ction.
l too
ocu-

to pro-

ain-
take

ending
mber,
umber.
address
* 2.1 Jan 30, 1997 Bill Green *
* Ported to Windows-95. *
* *
* Note: This program generates a lot of numbers *
* about the target program. Not all are useful. *
**/

This particular example is a bit long. It was created to show practical uses of every se
But it illustrates a problem with style guidelines: there is a strong temptation to overdo it. Al
often, a programming team will form a style committee, toss around a bunch of ideas for d
menting the code, and end up throwing them all into the header. This is almost guaranteed
duce confusing headers that are themselves a maintenance headache.

Heading comments should be as simple as possible, but no simpler.

Too much information is a burden on the programmer. It takes time to type it in and to m
tain it. Comments that take a lot of time to create and maintain tempt the programmer to
shortcuts. The result is incorrect or misleading comments, and awrong comment is worse than no
comment at all.

Real programs have shorter headers. Here is a header taken from a real program:

/**
* lab -- handle the labeling of diskettes. *
* *
* Usage: *
* lab -w <drive>:<name> Write label to disk. *
* lab -r <drive>: Read label. *
* lab -c <drive: drive: Copy label. *
* *
* Copyright 1992, Steve Oualline *
**/

#include <stdio.h>

Other sections
We've listed a general set of heading sections. You may need additional sections, dep

on your environment. For example, a student may be required to put in an assignment nu
social security number, and teacher's name. Professional programs may require a part n
Shareware must include a paragraph that asks the user to pay a license fee, along with an
to which users can send money.

Module Headings
Modules are similar to program files, except that there is nomain function. Their heading

comments are also structured similarly, except that there is no “Usage” section.
c02.doc - 21 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

t rec-
. Sec-

ake

l with a

ser to

fol-

s the

other
/**
* symbol.c -- Symbol table routines *
* *
* Author: Steve Oualline *
* *
* Copyright 1992 Steve Oualline *
* *
* Warning: Running out of memory kills the program. *
* *
* Algorithm: *
* The symbol table is kept as a balanced binary *
* tree. *
**/

Some programmers put a list of the public functions in the heading comments. This is no
ommended. First, all the public functions are already listed in the header file for this module
ond, keeping this list up to date requires work, and frequently a programmer will forget to m
the updates.

Function Headings
C functions serve much the same purpose as sections of a chapter in a book. They dea

single subject or operation that the reader can easily absorb.

In this book, each section starts with a section heading in bold letters. This allows the u
scan down a page to locate a section.

A function needs a similar heading. The comment box for a function should contain the
lowing sections:

• Name

The name of the function and a brief comment describing it.

• Parameters

A list of parameters (one per line) and a brief description of each of them. Sometime
words (returned) or (updated) are added.

• Return value

Describes what value the function returns. In addition to these standard sections, any
useful information about the function can be added. Here's an example:
c02.doc - 22 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

t it is
tly a
have

y to

ram
ning to

ethod
n you

hen
s then
in too

ding.
/**
* find_lowest -- find the lowest number in an array *
* *
* Parameters *
* array -- the array of integers to search. *
* count -- the number of items in the array. *
* *
* Returns *
* The index of the lowest number in the array *
* (in case of a tie, the first instance of the *
* number.) *
**/

Some people include another section: Globals Used. This is very useful information, bu
difficult to get and maintain. It takes a lot of work to keep this section current, and frequen
programmer will get lazy and ignore it. It is better not to have a Globals Used section than to
one that is wrong.

Rule 2-6:

Leave out unnecessary comments if they require maintenance and if you are unlikel
maintain them.

When to Write Comments
It is best to put your comments in the program as you are writing it. If you start your prog

with a set of heading comments, then you should have a pretty good idea what you are plan
do. It helps focus your thoughts.

Avoid the two-step process of coding and later going back and adding comments. This m
has several problems. First, you are likely to forget what you did. What may be obvious whe
write it may not be so obvious when you re-read it.

Another good reason to write comments while you're writing the code is psychological. W
the code is done, you're probably going to feel that the program is done. Adding comment
becomes a chore to be completed as quickly as possible. Generally, this means you'll put
few comments.

It is especially helpful to do things like screen layouts in comments before you start co
That way you have a model to work from.

Rule 2-7:

Comment your code as you write it.
c02.doc - 23 - Modified: January 9, 1999 12:16 am

C Elements of Style Draft Version 0.8 by Steve Oualline

e per-
nting.
o give

r pro-

r code
Some Comments on Comments
The heading comments always seem a bit long to the person creating the program. To th

son trying to maintain it, they always seem far too short. Balance is the key to good comme
Make your comments short enough so they aren't bothersome to put in, yet long enough t
other programmers a good idea of what's going on.

Overly commented programs are rare. Usually they turn up in the work of eager first-yea
gramming students.

Under-commented programs are far too frequent. Too many programmers think that thei
is obvious. It is not.

There is a reason it is called “code.”
c02.doc - 24 - Modified: January 9, 1999 12:16 am

	Chapter 2: File Basics, Comments, and Program Headings
	File Basics
	The Comment
	Graphics
	Packing bits

	Letting the Editor Help You
	Beginning Comment Block
	The sections of a heading

	• Purpose
	• Author
	• Copyright or License
	• Warning
	• Usage
	• Restrictions
	• Algorithms
	• References
	• File Formats
	• Revision History
	• Notes
	Other sections
	Module Headings
	Function Headings

	• Name
	• Parameters
	• Return value
	When to Write Comments
	Some Comments on Comments

